溶氧電極的工作原理及重要性溶氧電極是一種用于測量發酵液中溶解氧濃度的傳感器。它通過電化學原理,將溶解氧的濃度轉化為電信號,從而實現對溶氧水平的實時監測。在發酵罐廠中,溶氧電極的重要性不言而喻。合適的溶氧水平對于微生物的生長和代謝至關重要。如果溶氧不足,微生物的生長和代謝會受到抑制,從而影響發酵產物的產量和質量;反之,如果溶氧過高,可能會導致微生物的過度氧化,同樣會對發酵過程產生不利影響。因此,通過溶氧電極實時監測溶氧水平,并根據監測結果及時調整發酵條件,對于提高發酵產物的產量和質量具有重要意義。相比光學法溶氧電極,極譜法溶氧電極在成本和性價比上具有一定的優勢。河北高精度溶解氧電極
在微生物工程和生物技術領域,溶氧電極能夠輔助工藝參數調整,在微生物燃料電池(MFC)中,溶解氧是一個重要因素。不同初始陰極電解液溶解氧微環境下,MFC 的性能表現不同。例如,在以氮廢水為底物的兩室 MFC 中,分別在缺氧(1.5mg/L)、正常值(3.4mg/L)和富氧(4.4mg/L)三種不同初始陰極電解液溶解氧條件下進行研究。結果表明,MFC 性能取決于陰極的初始溶解氧濃度,在缺氧條件下功率密度優良。此外,高通量測序用于探索每個階段的陰極生物膜和微生物群落懸浮液,結果顯示陰極電極的優勢屬從 Pirellula 變為 Thermomonas,直至變為 Azospira。缺氧條件下,異養反硝化細菌活性受到抑制,硝化細菌比例增加。在微生物燃料電池中,陰極界面的溶解氧濃度是影響其性能的關鍵因素。通過運行三種不同溶解氧條件下的 MFC(空氣呼吸型、水浸沒型和由光合微生物輔助型)發現,在所有情況下,生物陰極都改善了與非生物條件相比的氧還原反應,其中空氣呼吸型 MFC 性能優良。光合培養物在陰極室中提供高溶解氧水平,高達 16mgO?/L,維持了 P-MFC 生物陰極中的好氧微生物群落。Halomonas、Pseudomonas 和其他微需氧屬達到總 OTUs 的 > 50%。江蘇極譜法溶解氧電極怎么賣在厭氧-好氧切換發酵中,溶解氧電極能夠準確判斷氧氣通入的時機和持續時間。
溶氧電極測值的變化還會影響微生物的群落結構。在不同的溶氧水平下,微生物群落會發生適應性變化。例如,在高鹽環境的微生物燃料電池中,當溶氧電極測值顯示特定的溶氧水平時,陰極生物膜中的微生物群落會發生改變,一些特定的菌種如 Desulfuromonas sp. 和 Gammaproteobacteria 會成為關鍵物種,影響微生物燃料電池的性能。因此,通過溶氧電極監測溶氧水平的變化,可以研究微生物群落結構與溶氧水平之間的關系。對于一些對氧氣敏感的微生物,溶氧電極的測值尤為重要。例如,微需氧微生物在低氧環境下生長,但對氧氣的濃度要求非常嚴格。溶氧電極可以精確地測量這種低氧水平,幫助研究人員確定微需氧微生物的較好生長條件。同時,對于一些在低氧環境下具有特殊代謝功能的微生物,如在微氧條件下能夠有效降解生物毒性污染物的微生物,溶氧電極可以監測到適宜的溶氧水平,促進其代謝過程。
溶氧電極在航空航天領域也有潛在應用。在航天器的生命保障系統中,需要精確控制艙內空氣中的氧氣含量,以保證宇航員的生命安全和健康。溶氧電極可用于監測艙內空氣的溶解氧濃度,當濃度發生異常變化時,系統能夠及時采取措施,如調節空氣循環系統、補充氧氣等,維持艙內空氣環境的穩定。此外,在航天飛行器的推進劑儲存和輸送過程中,對液體推進劑中的溶解氧含量也有嚴格要求,溶氧電極可用于監測推進劑中的溶解氧,確保推進劑的質量和性能。溶氧電極分為極譜式(需外部電源極化)和原電池式(自發電效應)。
合適的溶氧水平對于發酵產物的質量具有重要影響。例如,在某些發酵過程中,過高或過低的溶氧水平可能會導致發酵產物的純度降低、雜質含量增加等問題。通過溶氧電極實時監測溶氧水平,并根據監測結果及時調整發酵條件,可以有效地提高發酵產物的質量。在發酵罐廠中,溶氧電極的安全應用也非常重要。例如,在安裝和使用溶氧電極時,需要遵守相關的安全規范,避免發生觸電、失火等安全事故。此外,溶氧電極還需要與安全控制系統相結合,實現對發酵過程的安全監控。溶解氧電極的校準至關重要,否則可能導致測量誤差,進而影響發酵工藝的調控。河北高精度溶解氧電極
溶氧電極市場需求隨環保法規趨嚴和工業智能化升級持續增長。河北高精度溶解氧電極
溶氧電極在制藥生產環節中扮演著關鍵角色。在眾多藥物的合成反應過程中,氧氣濃度對反應進程和產品質量有著重要影響。溶氧電極能夠實時監控反應體系中的氧氣濃度,一旦濃度偏離預設范圍,相關設備可及時調整,確保反應在比較好條件下進行。例如在某些=的發酵生產中,精確控制溶氧濃度有助于提高發酵效率,增加=的產量與質量。同時,溶氧電極還能保障生產過程的安全性,防止因氧氣濃度異常引發的危險,如等潛在風險 。微基智慧科技(江蘇)有限公司河北高精度溶解氧電極