微電極的工作面積十分微小,其電極面積大小界限雖不十分嚴格,但這種小尺寸特性賦予了它獨特優勢。一方面,微電極實現了電極的微型化,在一些對空間要求極高的微納器件或生物體內檢測場景中,能輕松適配。另一方面,在電化學分析中,盡管整個電極并非微型化,但其極小的工作面積可使電極反應時發生明顯的極化作用。通過微電極指示出的擴散電流與離子濃度存在線性關系,借此可精確測知溶液中離子的濃度,在痕量分析等方面表現出色。電化學殺菌技術避免藥劑殘留風險。上海數據中心電極設施
高鹽循環水易導致設備腐蝕和結垢,電化學離子交換(EDI)技術結合離子交換樹脂與直流電場,可連續脫除Ca2?、Mg2?和Cl?等離子。以填充混床樹脂的電滲析模塊為例,在15 V電壓下,硬度離子去除率>90%,產水電阻率可達5 MΩ·cm。相比傳統離子交換,EDI無需酸堿再生,且自動化程度高。設計要點包括:①樹脂選擇(強酸/強堿型);②隔板流道優化(防堵塞);③極水循環(防結垢)。某電子廠超純水系統中,EDI使再生廢水排放量減少95%,運行成本降低30%。安徽海水淡化電極需求電化學-超濾耦合工藝使回用率達90%。
電極氧化反應遵循電化學熱力學原理,可用能斯特方程描述電極電位與反應物濃度的關系。以鐵電極為例,其氧化反應Fe→Fe2?+2e?的標準電極電位為-0.44V(vs SHE)。當系統電位超過該值,熱力學上即可發生自發氧化。在實際水系統中,溶解氧的存在會顯著提高氧化電位,例如O?+2H?O+4e?→4OH?反應的標準電位達+0.40V,二者耦合構成腐蝕電池。溫度每升高10℃,氧化反應速率通常提高1.5-2倍,這對高溫循環水系統的電極選材提出更高要求。
電鍍法也是制備鈦電極的重要手段。在電鍍過程中,將鈦基體作為陰極,浸入含有活性金屬離子的電鍍液中,通過施加合適的電流密度,使活性金屬離子在鈦基體表面還原沉積,形成活性涂層。例如,在制備鈦基貴金屬電極時,可以采用電鍍法將金、鉑等貴金屬沉積在鈦基體表面。電鍍法能夠精確控制涂層的厚度和成分,制備出具有均勻涂層的鈦電極。同時,通過調整電鍍液的配方和電鍍工藝參數,還可以制備出具有特殊結構和性能的涂層,滿足不同的應用需求 。電化學技術減少90%酸堿藥劑消耗。
鈦電極是以鈦為基體,通過表面改性處理制備而成的電極材料。鈦作為一種具有高比強度、良好耐腐蝕性的金屬,為電極提供了穩定的機械支撐。在電極制備過程中,通常會在鈦基體表面涂覆一層或多層具有電催化活性的物質,如金屬氧化物、貴金屬等。這些活性涂層能夠明顯改變電極的電化學性能,使其具備特定的電催化功能,從而在不同的電化學過程中發揮作用。例如,在氯堿工業中,鈦電極的使用大幅提高了電解效率和產品質量,推動了行業的發展。鈦電極的出現,為眾多需要高效、穩定電極材料的領域提供了新的解決方案。
電化學處理使設備清洗頻率降低80%。上海數據中心電極設施
污染土壤淋洗液常含高濃度重金屬和有機污染物(如PAHs),電極氧化還原反應可以協同去除兩類污染物。以Pb-芘復合污染淋洗液為例,Ti/PbO?陽極降解芘的同時,陰極還原Pb2?為Pb?實現回收。關鍵參數為淋洗劑選擇(檸檬酸優于EDTA,避免絡合競爭)和pH控制(酸性條件利于重金屬還原)。技術瓶頸在于土壤淋洗液的高顆粒物含量易堵塞電極,需前置過濾或采用旋轉陰極設計。現場試驗顯示,處理成本比焚燒法降低50%以上,且無二次污染風險。上海數據中心電極設施