心電圖可記錄心臟的電活動過程,它對心臟基本功能及其病理研究方面具有重要的參考價值。傳統的生物電勢電極是由Ag/AgCl制作而成的, 這種電極有很多缺點: 1) 需要皮膚準備。 2)使用電解凝膠很不方便,會給人體帶來不適感。 3)一次性,不能重復使用。基于微針陣列的微電極可刺穿皮膚的角質層, 這樣就避開了皮膚角質層高阻抗的特性,與傳統電勢電極相比,不需要皮膚準備和電解凝膠,使用方便,有利于長期測量使用。 L.M.Yu利用空心硅微針制作出了用于心電圖測試的電極。這種電極能獲得高信噪比的信號,而且使用方便,對人體沒有什么副作用,比較適合老年人在家使用。微針在使用前需要進行消毒才能使用。常州低晶微針技術
先進的3D打印方法可以制造出受控幾何形狀的聚合物微針(難以使用傳統方法制造)。Cassie利用連續液體界面生產的三維打印技術設計并制造出了刻面微針陣列。與光滑的金字塔形設計相比,刻面微針的設計增加了表面積,以增加了模型表面涂層中的疫苗組分(卵清蛋白和CpG)。利用熒光標記和活著的動物成像,評估了小鼠體內疫苗的保留和生物利用度。刻面微針陣列與皮下注射相比,微針透皮遞送不僅增強了皮膚中疫苗的含量,而且還改善了引流淋巴結中免疫細胞的活性。南京固體微針加工制造利用濕法腐蝕制作的硅微針為八邊形棱錐。
目前,文獻中報道較多的干電極的制作材料主要包括:單晶硅、金屬(鈦、鎳、不銹鋼)、 高分子聚合物和玻璃等。有人在單晶硅片上采用深反應離子刻蝕技術工藝制備了高度較高的實心微針陣列。有人在鈦薄板上利用微加工工藝制備了鈦微針用于經皮給藥系統的研究。有人利用深曝光的方法制備了甲基丙稀酸甲酯(PMMA)微針用于腦機接口系統。雖然干電極的制作材料多種多樣,其基材的選擇主要考慮以下幾個因素:1)材料的生物相容性;2)微針陣列的機械強度;3)材料加工工藝的復雜度及工藝成本。
微針陣列技術具有非常廣闊的應用前景,但是也依舊面臨著許多問題。首先,微針材料的機械強度和生物安全性需要進行嚴格評估。此外,不同膚色、年齡和性別的人皮膚的厚度也不同,在制造微針時,需要考慮微針的群體適用性。同時,與科研實驗不同,把微針技術真正投放到市場需克服很多困難,比如批量生產問題、工業制造中的消毒問題、投入市場時微針的穩定性或者有效期以及微針的制作成本等問題,這些都是微針投放進入市場必須考慮和解決的問題。微針陣列經過多年的摸索,其工藝逐漸趨于成熟。
多種有機材料已成為微加工領域的主力軍,其中用來制作微針陣列的主要材料是PMMA,而SU-8和PDMS常被選擇為制作過程中的輔助材料。利用PMMA材料制作頂端角為45°的微針陣列結構,其制作方法采用雙深X射線曝光,在電極正反兩面濺射金屬以實現正反兩面電連接。PLGA(聚乳酸-羥基乙酸共聚物)制作的傾斜的微針,其中微針長度為400um,頂部直徑為30um,底部直徑為100um。SU-8材料制作的塔形的微針陣列,主要采用正反兩面紫外曝光和反應離子刻蝕的方法制作而成,微針高為350um,底端直徑為70um。PMMA材料制作的塔形的微針陣列,是由SU-8微針陣列翻模而成。由于微針的深寬比較大,依靠PMMA本身的硬度無法順利刺入皮膚因此需要在PMMA微針表面覆蓋一層金屬以增加其硬度。20世紀90年代才制作出硅微針。徐州MEMS微針加工制造
微針給藥結合了經皮給藥和傳統注射的優點。常州低晶微針技術
制備硅微針的工藝流程如下。首先通過濕法氧化在硅片兩面形成二氧化硅層, 對正面的 二氧化硅層進行圖形化; 接著進行深反應離子刻蝕, 當硅片被刻穿時,二氧化硅層阻止了刻蝕, 刻蝕只能向其他方向進行, 從而形成半球形結構,這就是沖孔效應; 再對硅片進行氧化, 去除底部的二氧化硅層, 后面刻蝕硅片得到微針陣列。該法充分利用硅深 刻蝕能力及硅和二氧化硅兩種材料間的選擇性加工得到批量化中空硅微針陣列, 剩余的硅成為二氧化硅微針的支撐體,并可進一步與微流體系統鍵合集成。常州低晶微針技術