隨著人工智能技術的突破、主要零部件成本的下降,智能服務機器人產業迎來了蓬勃發展,基于自主定位導航的機器人底盤需求也日益增大,它承載著機器人定位、導航、避障等多種功能,是機器人不可或缺的重要硬件。如此重要的機器人底盤,它究竟由哪些主要技術組成呢?這里就來為大家普及下機器人的底盤結構。機器人底盤內部主要組件,以機器人底盤Apollo為例,在Apollo的內部結構中,主要由激光雷達傳感器、深度攝像頭、超聲波及防跌落傳感器,模塊化定位導航系統SLAMWARE、等主要硬件組成。使其擁有可靠、易用的自主定位導航解決方案,多傳感器融合配合導航算法,能更靈活的規劃機器人行走路線。輪式機器人底盤作為輪式機器人的重要部件,安裝有驅動裝置,前輪,后輪等部件。寧波履帶式服務機器人底盤
在結構上,四輪差速結構是以電機左右差動為轉向動力源,動力從電機輸出之后,經過減速機然后分別輸送至左右側前后軸較終到達車輪。因為部分四輪差動結構為保證機器人在原地旋轉與左右轉向時候輸出動力,需具有減速器排布,造成四輪差動機器人內部空間排布相對緊張或整體結構體積較重 。而四轉四驅結構,省去了減速機這些部件,電機動力直接轉化為驅動動力,轉向機構則由單獨的電機進行控制,結構上要更簡單、緊湊,零部件數量更少。更少的零配件,更簡單的結構,因此在控制效率上,四轉四驅相比四輪差速的結構有著先天的優勢,同時更少的零件讓整個四驅系統的故障率也會更低,穩定性上要更高。寧波履帶式服務機器人底盤機器人底盤支持多種數據通信協議,能夠與其他設備進行高效的數據交互。
雙舵輪驅動結構[適合1T以上負載,同時要求可以任意方向平移的場合],雙舵輪驅動結構是目前市場上較常見的結構之一,其結構由兩個驅動輪和一個或多個非驅動輪組成,通常應用于中等載重的AGV上。由于其結構設計合理,可以更好地保持AGV在直線行駛時的穩定性,并且轉彎時無需特殊技巧,因此在市場上得到了普遍應用。雙舵輪底盤常見的2種結構形式有:1)舵輪居中布置:舵輪布置在車體中心線上,前后對稱布置,直線行走時,前后舵輪調整同樣的角度實現路徑偏移調整,自轉時,左右舵輪轉動90度,變成差速式,可實現自轉。2)舵輪對角布置:舵輪中心對稱布置,運動形式相較中心線布置時調整較為復雜。
AGV工業機器人的底盤技術是其主要部件之一,它決定了機器人的移動性能和適應性。通過不斷的技術創新和改進,AGV底盤技術能夠不斷提升機器人的自主導航能力、運動精度和安全性能。AGV&AMR(自主移動機器人)是一種自動化搬運設備,它通過無線遙控或計算機控制系統實現貨物的自動搬運作業。AGV車身通常由以下幾個部分組成:導航模塊-激光導航。控制器,控制器和信息顯示屏:控制器負責控制AGV的各項功能,如速度、方向和避障等。信息顯示屏則用于顯示AGV的位置、狀態和作業進度等信息。機器人底盤的控制系統支持多種編程語言,方便用戶進行二次開發和定制。
較近想做一個關于移動機器人的總結,就先從移動機器人的底盤說起吧。現在移動機器人這么火熱,大到無人駕駛車,規矩的有工業上應用得很多的AGV(比如智能物流自動搬運機器人),小到淘寶上面的智能小車,都可以算作移動機器人。移動機器人有各種各樣的底盤,有兩輪的三輪的四輪的,比如無人車是四輪的阿克曼模型,一般的AGV是兩輪差速模型,還有大學生機器人競賽里面常見的三輪全向輪底盤,四輪全向輪底盤,還有一些AGV是四輪滑移底盤,是不是有點讓人眼花繚亂的感覺呢,哈哈,下面就逐一來分析一下,關于運動學的話我不會推導公式,我本人也是不太喜歡推公式的,我覺得有現成的用,理解其含義就好了,我就從工程應用上面說說怎么用。底盤的智能控制系統,使機器人能夠自主規劃路徑,實現高效作業。寧波履帶式服務機器人底盤
機器人承載了機器人本身的定位、導航、移動、避障等基礎功能。寧波履帶式服務機器人底盤
智能機器人底盤選型原則:1.根據應用場合選擇底盤類型。不同應用場合對底盤的要求不同,如在草坪場合需要選擇輪式底盤,而在不平的地面上起重機器人則需要鏈式底盤。2.根據實際負載選擇機器人底盤。不同負載對機器人底盤的要求也不同,如機器人需要承載更大的負載,選用質量更為牢固的底盤和結構比較合適。3.根據傳動方式選擇機器人底盤。不同機器人底盤傳動方式不同,如在高速運動和加減速變化較大的機器人中,較好選擇齒輪傳動較好的底盤。總之,智能機器人底盤是機器人的重要組成部分,其構造和部件對機器人的性能、功能等方面有著重要的影響。在機器人設計過程中,應根據具體應用場景和需求,選用合適的底盤構造與部件。寧波履帶式服務機器人底盤