司太立合金是20世紀Elwood Haynes發明的一種鈷基合金,司太立合金是一種以鈷為主要成分的合金,含有相當數量的鎳、鉻、鎢和少量的鉬、鈮、鉭、鈦、鑭等合金元素,偶爾也含有鐵。可以承受各種類型的磨損、腐蝕和高溫氧化。該合金具有優異的高溫抗氧化性和熱強度,在應力條件下具有良好的抗氣蝕性能。根據合金中成分的不同,可制成焊絲、用于硬面焊接的粉末、熱噴涂、噴焊等工藝,也可制成鑄鍛件和粉末冶金零件。廣泛應用于內燃機、航空、閥門、汽輪機制造等行業。目前,隨著不同工程背景和要求的材料冶煉技術的發展,精密鑄造好的司太立合金零件正廣泛應用于高溫滑動摩擦環境或高溫密封環境。司太立合金可以根據合金中成分不同,制成焊絲。吉林實驗用司太立合金鑄件
司太立合金介紹如下:司太立堆焊合金含鉻25-33%,含鎢3-21%,含碳0.7-3.0%。,隨著含碳量的增加,其金相組織從亞共晶的奧氏體+M7C3型共晶變成過共晶的M7C3型初生碳化物+M7C3型共晶。含碳越多,初生M7C3越多,宏觀硬度加大,抗磨料磨損性能提高,但耐沖擊能力,焊接性,機加工性能都會下降。被鉻和鎢合金化的司太立合金具有很好的抗氧化性,抗腐蝕性和耐熱性。在650℃仍能保持較高的硬度和強度,這是該類合金區別于鎳基和鐵基合金的重要特點。司太立合金的發展應考慮鈷的資源情況。鈷是一種重要戰略資源,世界上大多數國家缺鈷,以致司太立合金的發展受到限制。遼寧非標司太立合金鑄件司太立合金的典型牌號有Stellite31。
碳化物強化相鈷基高溫合金中很主要的碳化物是MC,M23C6和M6C在鑄造司太立合金中,M23C6是緩慢冷卻時在晶界和枝晶間析出的。在有些合金中,細小的M23C6能與基體γ形成共晶體。MC碳化物顆粒過大,不能對位錯直接產生顯著的影響,因而對合金的強化效果不明顯,而細小彌散的碳化物則有良好的強化作用。位于晶界上的碳化物(主要是M23C6)能阻止晶界滑移,從而改善持久強度,鈷基高溫合金HA-31(X-40)的顯微組織為彌散的強化相為(CoCrW)6 C型碳化物。
司太立合金可用電阻坩鍋爐。此外感應電爐(工頻、中頻)也有使用。合金的結構要比純金屬復雜得多。因為合金由兩種或多種元素組成,各元素間的相互作用,會形成各種不同的相。我們把在金屬和合金中,凡化學成分相同、結構相同并與其他部分由界面分開的均勻組成部分,稱之為相。用機械合金化技術制備的粉末冶金高溫合金。機械合金化(MA)的功能是藉高能球磨機將組成元素粉末和超細氧化物質點充分均勻化,并將金屬粉末加工成為合金粉末。MA的原理是金屬粉末在機械力作用下變形、破碎和反復冷焊。MA過程中硬度較高的氧化物和金屬粉末不斷地被揉入軟基體金屬中,它不同于一般的混合,基本上不受粉末粒度的限制。司太立合金的性能特點是抗蠕變。
司太立合金的典型牌號有:Stellite1,Stellite4,Stellite6,Stellite8,Stellite12,Stellite20,Stellite31,Stellite100等。在我國,主要對司太立高溫合金研究比較深入和透徹。與其它高溫合金不同,司太立高溫合金不是由與基體牢固結合的有序沉淀相來強化,而是由已被固溶強化的奧氏體fcc基體和基體中分布少量碳化物組成。鑄造司太立高溫合金卻是在很大程度上依靠碳化物強化。純鈷晶體在417℃以下是密排六方(hcp)晶體結構,在更高溫度下轉變為fcc。司太立合金的典型牌號有Stellite4。吉林實驗用司太立合金鑄件
肯納司太立金屬(上海)有限公司尊崇團結、信譽、勤奮。吉林實驗用司太立合金鑄件
司太立合金注意事項有哪些?鑄造司太立高溫合金卻是在很大程度上依靠碳化物強化。純鈷晶體在417℃以下是密排六方(hcp)晶體結構,在更高溫度下轉變為fcc。為了避免司太立高溫合金在使用時發生這種轉變,實際上所有司太立合金由鎳合金化,以便在室溫到熔點溫度范圍內使組織穩定化。司太立合金具有平坦的斷裂應力-溫度關系,但在1000℃以上卻顯示出比其他高溫下具有優異的抗熱腐蝕性能,這可能是因為該合金含鉻量較高,這是這類合金的一個特征。也可以制成鑄鍛件和粉末冶金件。吉林實驗用司太立合金鑄件
肯納司太立金屬(上海)有限公司主營品牌有司太立,Stellite,發展規模團隊不斷壯大,該公司生產型的公司。肯納司太立是一家有限責任公司企業,一直“以人為本,服務于社會”的經營理念;“誠守信譽,持續發展”的質量方針。公司業務涵蓋耐磨焊材,涂層設備,耐磨制品,齒科材料,價格合理,品質有保證,深受廣大客戶的歡迎。肯納司太立順應時代發展和市場需求,通過**技術,力圖保證高規格高質量的耐磨焊材,涂層設備,耐磨制品,齒科材料。