探索LIMS在綜合第三方平臺(tái)建設(shè)
高校實(shí)驗(yàn)室引入LIMS系統(tǒng)的優(yōu)勢(shì)
高校實(shí)驗(yàn)室中LIMS系統(tǒng)的應(yīng)用現(xiàn)狀
LIMS應(yīng)用在生物醫(yī)療領(lǐng)域的重要性
LIMS系統(tǒng)在醫(yī)藥行業(yè)的應(yīng)用
LIMS:實(shí)驗(yàn)室信息管理系統(tǒng)的模塊組成
如何選擇一款適合的LIMS?簡(jiǎn)單幾步助你輕松解決
LIMS:解決實(shí)驗(yàn)室管理的痛點(diǎn)
實(shí)驗(yàn)室是否需要采用LIMS軟件?
LIMS系統(tǒng)在化工化學(xué)行業(yè)的發(fā)展趨勢(shì)
在生物系統(tǒng)內(nèi),甲基化是經(jīng)酶催化的,這種甲基化涉及重金屬修飾、基因表達(dá)的調(diào)控、蛋白質(zhì)功能的調(diào)節(jié)以及核糖核酸(RNA)加工。重金屬修飾可以在生物系統(tǒng)外發(fā)生。組織樣本的化學(xué)甲基化也是組織染色的方法之一。表觀遺傳學(xué)的甲基化包括DNA甲基化或蛋白質(zhì)甲基化。1)DNA甲基化。脊椎動(dòng)物的DNA甲基化一般發(fā)生在CpG位點(diǎn)(胞嘧啶-磷酸-鳥嘌呤位點(diǎn),即DNA序列中胞嘧啶后緊連鳥嘌呤的位點(diǎn))。經(jīng)DNA甲基轉(zhuǎn)移酶催化胞嘧啶轉(zhuǎn)化為5-甲基胞嘧啶。人類基因中約80%-90%的CpG位點(diǎn)已被甲基化,但是在某些特定區(qū)域,如富含胞嘧啶和鳥嘌呤的CpG島則未被甲基化。這與包含所有普遍表達(dá)基因在內(nèi)的56%的哺乳動(dòng)物基因中的啟動(dòng)子有關(guān)。1%-2%的人類基因組是CpG群,并且CpG甲基化與轉(zhuǎn)錄活性成反比。如果在細(xì)胞分裂過(guò)程中不被糾正,就會(huì)誘發(fā)遺傳病或tumour,而且,生物體甲基化的方式是穩(wěn)定的, 可遺傳的。安徽全基因組甲基化重測(cè)序分析
WGBS(Whole Genome Bisulfite Sequence)全基因組甲基化測(cè)序,利用重亞硫酸氫鹽使DNA中未發(fā)生甲基化的胞嘧啶(C)脫氨基轉(zhuǎn)變成尿嘧啶(U),而甲基化的胞嘧啶保持不變,然后通過(guò)PCR將U變?yōu)锳,*有甲基化的C可以成功保留,***通過(guò)測(cè)序就可判斷CpG位點(diǎn)是否發(fā)生甲基化。特點(diǎn)是精確度高、重復(fù)性好,檢測(cè)范圍廣,可以覆蓋全基因組范圍內(nèi)的每一個(gè)C堿基的甲基化狀態(tài);但需要的數(shù)據(jù)量比較大,成本較高。上海翼和生物是上海市遺傳學(xué)會(huì)理事單位,上海市****,至今已有16年的歷史。安徽目標(biāo)位點(diǎn)甲基化重測(cè)序Hi-Methylseq方案一次測(cè)序反應(yīng)每個(gè)位點(diǎn)測(cè)序上百次節(jié)約時(shí)間、成本、定量準(zhǔn)確。
DNA甲基化即在DNA上增加甲基基團(tuán),是使基因的轉(zhuǎn)錄抑制或沉默的主要方式。該修飾特異性地發(fā)生在CpG位點(diǎn),胞嘧啶通過(guò)磷酸鹽與鳥苷酸連接(圖1)。甲基基團(tuán)的插入改變了DNA的表觀和結(jié)構(gòu),可能會(huì)直接阻礙DNA的識(shí)別及與轉(zhuǎn)錄因子的結(jié)合,或者吸引其他因子優(yōu)先與DNA結(jié)合,干擾轉(zhuǎn)錄因子的結(jié)合。目前已鑒定了三個(gè)與甲基化DNA結(jié)合的蛋白家族,包括MBD蛋白、Kaiso和Kaiso樣蛋白、以及SRA蛋白。通過(guò)招募這些蛋白,DNA甲基化可促進(jìn)某些組蛋白狀態(tài)的維持,如去乙酰作用,從而保持轉(zhuǎn)錄后的組蛋白修飾。例如,MBD家族的甲基CpG結(jié)合蛋白2(MeCP2)與甲基CpG結(jié)合,招募HDACs,可促使染色體濃縮和轉(zhuǎn)錄抑制。
表觀遺傳學(xué)研究已經(jīng)證實(shí)了特定基因區(qū)域的DNA甲基化修飾對(duì)于染色體構(gòu)象、基因表達(dá)調(diào)控機(jī)制有著重要影響,而全基因組DNA甲基化研究將是表觀基因組學(xué)為關(guān)注的內(nèi)容之一。Bisulfite處理能夠?qū)⒒蚪M中未發(fā)生甲基化的C堿基轉(zhuǎn)換成U,進(jìn)行PCR擴(kuò)增后變成T,與原本具有甲基化修飾的C堿基區(qū)分開來(lái),再結(jié)合高通量測(cè)序技術(shù),可繪制單堿基分辨率的全基因組DNA甲基化圖譜。特定物種的高精確度甲基化修飾模式的分析,必將在表觀基因組學(xué)研究中具有里程碑式的意義,并且為細(xì)胞分化、組織發(fā)育等基礎(chǔ)機(jī)制研究,以及動(dòng)植物育種、人類健康與疾病研究奠定基礎(chǔ)。DNA甲基化是一種表觀遺傳修飾,是由DNA甲基轉(zhuǎn)移酶催化S-腺苷甲硫氨酸(S-adenosylmethionine)作為甲基供體.
DNA甲基化過(guò)程在一些生物學(xué)現(xiàn)象中起重要作用。例如,在原核生物中,它參與毒力、細(xì)胞周期調(diào)控、基因表達(dá)和對(duì)外源 DNA 導(dǎo)入的保護(hù)(DNA-宿主特異性)等過(guò)程。在高等真核生物中,DNA 甲基化參與調(diào)控染色體穩(wěn)定性、印記、X 染色體失活和cancer 變等多個(gè)細(xì)胞過(guò)程。在哺乳動(dòng)物中,DNA 甲基化主要發(fā)生在胞嘧啶堿基的第五個(gè)碳原子上,形成 5-甲基胞嘧啶或 5-甲基胞嘧啶核苷 (5-mC)。DNA甲基化幾乎只存在于CpG二核苷酸上,是一個(gè)關(guān)鍵的表觀遺傳標(biāo)記和基因表達(dá)調(diào)控因子。基因啟動(dòng)子或 CpG 島處的甲基化 CpG 簇與基因失活有關(guān)。DNA 甲基化由一個(gè)被稱為 DNA 甲基轉(zhuǎn)移酶并包括 DNMT1、DNMT3a 和 DNMT3b 的酶家族催化。DNMT3a 和 DNMT3b是從頭合成的甲基轉(zhuǎn)移酶,能夠甲基化之前未甲基化的 CpG二核苷酸。相反,DNMT1是一種維持性甲基轉(zhuǎn)移酶,在復(fù)制過(guò)程中修飾半甲基化的 DNA。上海翼和生物通過(guò)亞硫酸氫鹽處理,用PCR擴(kuò)增目的片段,并結(jié)合二代測(cè)序平臺(tái)并對(duì)PCR產(chǎn)物進(jìn)行測(cè)序。南京目標(biāo)區(qū)間甲基化重測(cè)序分析
異常的DNA甲基化可參與調(diào)控疾病相關(guān)的分子信號(hào)通路,從而影響其正常功能。安徽全基因組甲基化重測(cè)序分析
WGBS能為基因組DNA甲基化時(shí)空特異性修飾的研究提供重要技術(shù)支持,能廣泛應(yīng)用在個(gè)體發(fā)育、衰老和疾病等生命過(guò)程的機(jī)制研究中,也是各物種甲基化圖譜研究的優(yōu)先方法。常規(guī)全基因組甲基化測(cè)序技術(shù)通過(guò)T4-DNA連接酶,在超聲波打斷基因組DNA段的兩端連接接頭序列,連接產(chǎn)物通過(guò)重亞硫酸鹽處理將未甲基化修飾的胞嘧啶C轉(zhuǎn)變?yōu)槟蜞奏,進(jìn)而通過(guò)接頭序列介導(dǎo)的 PCR 技術(shù)將尿嘧啶U轉(zhuǎn)變?yōu)樾叵汆奏。上海翼和是上海市遺傳學(xué)會(huì)理事單位,上海市****,至今已有十六年的歷史。安徽全基因組甲基化重測(cè)序分析
上海翼和應(yīng)用生物技術(shù)有限公司是一家第三方檢測(cè)服務(wù);生物專業(yè)領(lǐng)域內(nèi)的技術(shù)開發(fā)、技術(shù)咨詢、技術(shù)服務(wù);健康衰老評(píng)估;大健康檢測(cè);遺傳學(xué)技術(shù)服務(wù);生物醫(yī)藥行業(yè)質(zhì)控檢測(cè)技術(shù)技術(shù)服務(wù);小鼠遺傳品系鑒定;轉(zhuǎn)基因小鼠基因型鑒定;細(xì)胞點(diǎn)突變檢測(cè);細(xì)胞端粒長(zhǎng)度和端粒酶活性檢測(cè)。的公司,致力于發(fā)展為創(chuàng)新務(wù)實(shí)、誠(chéng)實(shí)可信的企業(yè)。翼和生物深耕行業(yè)多年,始終以客戶的需求為向?qū)В瑸榭蛻籼峁?**的細(xì)胞組織小鼠質(zhì)控,大健康檢測(cè),生物技術(shù)服務(wù)。翼和生物不斷開拓創(chuàng)新,追求出色,以技術(shù)為先導(dǎo),以產(chǎn)品為平臺(tái),以應(yīng)用為重點(diǎn),以服務(wù)為保證,不斷為客戶創(chuàng)造更高價(jià)值,提供更優(yōu)服務(wù)。翼和生物始終關(guān)注自身,在風(fēng)云變化的時(shí)代,對(duì)自身的建設(shè)毫不懈怠,高度的專注與執(zhí)著使翼和生物在行業(yè)的從容而自信。