OLTC是在勵磁狀態下,通過改變繞組分接位置實現電網的有載調壓,起到穩定負載電壓、調節無功潮流、增加電網靈活度等重要作用。它是調壓變壓器中***的可動部件、關鍵部件之一。國際大電網委員會(GIGRE)等國內外統計結果表明(下圖1所示),OLTC故障占變壓器總體故障的30%以上,各類故障影響變壓器及整個電網的安全穩定運行,嚴重時更會導致大面積停電、電氣火災等事故。OLTC的故障模式有多種,具體包括傳動軸斷裂、選擇開關觸頭接觸不良、操作機構失靈造成的拒動或滑檔現象、限位開關失靈、切換開關拒切、中止或動作滯后、內部緊固件松動和脫落、以及內部滲漏等。根據國家電網設備部發布的《設備管理重點工作任務》,2020年度需完成382臺換流變OLTC隱患整改,加快消除故障隱患。因此,實施OLTC在線監測與故障診斷不僅對確保變壓器及整個電網安全穩定運行具有重要的現實意義,也是今后的發展方向。振動聲學指紋識別算法對不同設備運行狀態的適應性參數如何?浙江GIS在線監測技術說明
提高對 GIS 設備機械性故障監測的重視程度,需要加強對運維人員的培訓。運維人員作為設備維護的直接執行者,其對機械性故障監測技術的掌握程度直接影響監測效果。通過組織專業培訓課程,向運維人員傳授 GIS 設備機械性故障的原理、監測方法和數據分析技巧等知識。例如,開展振動監測技術培訓,讓運維人員了解振動傳感器的安裝位置、信號采集方法以及如何分析振動數據判斷設備故障。同時,通過實際案例分析,提高運維人員對機械性故障的識別和處理能力,確保監測工作的有效開展。電抗器在線監測監測異常處理該技術對周期性振動信號的特征提取參數有哪些?
本系統在監測 GIS 設備局部放電方面,特高頻傳感器(UHF)扮演著至關重要的角色。這些傳感器外置安裝于 GIS 盆式絕緣子上,盆式絕緣子作為 GIS 設備內部電場分布的關鍵部位,局部放電產生的特高頻信號會在此處傳播。特高頻傳感器憑借其對特定頻段信號的高靈敏度,能夠精細耦合這些微弱的局部放電信號。例如,當 GIS 設備內部因絕緣缺陷產生局部放電時,特高頻傳感器可快速捕捉到頻率在 300MHz - 1500MHz 范圍內的信號,為后續數據采集與分析提供原始依據,其外置安裝方式不僅不影響 GIS 設備的正常運行,還便于安裝與維護。
3.3.2繞組及鐵芯運行狀態分析下圖3.10a為變壓器運行時繞組及鐵芯的聲紋振動時域信號。為更直觀地分析繞組及鐵芯運行狀態,采用頻域法分析聲紋振動信號。如下圖11(b)所示,基于聲紋振動信號的頻域分布,提取峰值頻率、總諧波畸變率、基頻能量比、互相關系數特征參量作為分析參數。各特征參量定義及解釋如下:
3.3.2.1峰值頻率:頻譜圖中比較大幅值對應的頻率值。3.3.2.2總諧波畸變率(TotalHarmonicDistortion,THD)所有50Hz整數倍諧波分量的有效值與基頻100Hz分量有效值的比值,計算公式:THD=i=0nVi2V1,其中V1為100Hz基頻分量有效值,Vi為各諧波分量有效值,i為頻率索引值。正常狀態下,由于100Hz基頻分量為振動頻譜圖的主要成分,總諧波畸變率應較小;存在故障時,諧波分量增加且峰值頻率發生偏移,總諧波畸變率變大。 對于不同材質設備,監測技術的參數是否需要調整?
在智能電網建設的大背景下,本系統的網絡傳輸方式和數據處理功能與智能電網的發展理念高度契合。它能夠將監測到的 GIS 設備局部放電數據實時上傳至智能電網的大數據平臺,與其他電力設備數據進行整合分析。通過大數據分析技術,能夠挖掘出設備運行狀態之間的潛在關聯,實現對電力系統的智能化管理和決策。例如,通過分析大量 GIS 設備的局部放電數據以及電網負荷數據等,預測設備故障的發生概率,提前安排設備維護計劃,提高智能電網運行的可靠性和經濟性。在線監測系統的故障診斷準確率與哪些參數相關?杭州變壓器在線監測直銷價格
技術在不同海拔高度下,監測參數是否穩定?浙江GIS在線監測技術說明
振動分析在在線監測中的作用振動分析是在線監測中常用的技術手段之一,通過對設備振動信號的采集與分析,可識別設備的運行狀態,早期發現軸承磨損、不平衡、不對中等機械故障,是設備故障診斷與預防維護的重要工具。
溫度監測的重要性溫度是反映設備運行狀態的重要參數之一,異常的溫度升高往往是設備故障的先兆。通過在線溫度監測,可以及時發現設備過熱問題,預防火災、等安全風險,保障設備的正常運行。
在線監測與預測性維護的結合在線監測技術與預測性維護理念相結合,通過大數據分析和機器學習算法,能夠預測設備的未來狀態,提前規劃維護工作,避免計劃外停機,***降低維護成本,提高生產效率。 浙江GIS在線監測技術說明