臥式爐在半導體制造流程中扮演著極為重要的角色,是熱處理工藝的關鍵設備。其獨特的臥式結構設計,主要由爐體、加熱系統、氣體控制系統、溫度監測系統等部分構成。爐體通常采用耐高溫、耐腐蝕的材料,如石英或特種合金,能承受高溫環境且化學性質穩定,為內部反應提供安全可靠的空間。加熱系統分布于爐體周圍,可實現對爐內溫度的精確調控,以滿足不同半導體工藝對溫度的嚴格要求。氣體控制系統則負責精確調節爐內的氣體種類、流量與壓力,營造特定的反應氣氛。在半導體制造中,臥式爐常用于氧化、擴散、退火、化學氣相沉積(CVD)等多種熱處理工藝,這些工藝對半導體材料的性能塑造起著決定性作用,直接影響半導體器件的質量與性能。出色的溫度均勻性提升臥式爐工藝質量。湖南臥式爐PSG/BPSG工藝
在紡織印染行業,臥式爐在織物的熱定形和染色后處理等工藝中發揮著重要作用。在熱定形過程中,臥式爐能夠精確控制溫度和時間,使織物在高溫下穩定其尺寸和形狀,提高織物的平整度和抗皺性能。通過優化爐內的氣流分布,確保織物受熱均勻,避免出現局部過熱或過冷現象,保證定形效果的一致性。在染色后處理中,臥式爐可用于織物的烘干和固色,通過精確控制溫度和濕度,提高染料的固著率,減少染料的浪費和環境污染。此外,臥式爐的連續化生產能力,滿足了紡織印染行業大規模生產的需求,提高了生產效率。賽瑞達臥式爐LPCVD持續技術創新推動臥式爐性能不斷升級。
在鋼鐵行業,臥式爐被大范圍用于鋼板、鋼管和型材的熱處理工藝。其水平設計使得大型鋼材能夠平穩地通過爐膛,確保加熱均勻。例如,在鋼板的正火和退火過程中,臥式爐能夠提供穩定的高溫環境,確保鋼材的機械性能和內部組織結構達到設計要求。此外,臥式爐還可用于鋼管的熱處理,提高其耐壓性和耐腐蝕性。通過臥式爐,鋼鐵材料的性能得到了明顯提升,為建筑、汽車和能源行業提供了高質量的材料支持。在耐火材料制造領域,臥式爐被用于耐火磚和耐火澆注料的高溫燒結。其水平設計使得大型耐火制品能夠平穩地通過爐膛,確保加熱均勻。例如,在鎂碳磚的燒結過程中,臥式爐能夠提供穩定的高溫環境,確保耐火材料的致密性和耐高溫性能達到設計要求。此外,臥式爐還可用于特種耐火材料的制造,如氧化鋁陶瓷和碳化硅制品,為冶金和化工行業提供高性能的耐火解決方案。
化學氣相沉積(CVD)是臥式爐另一重要應用領域。在爐管內通入反應氣體,高溫促使反應氣體在晶圓表面發生化學反應,進而沉積形成薄膜。早期,多晶硅、氮化硅、二氧化硅等關鍵薄膜的沉積常借助臥式爐完成。即便如今部分被單片式 CVD 取代,但在對薄膜均勻性要求極高、需大批量沉積特定薄膜,如厚氧化層時,臥式爐 CVD 憑借其均勻性優勢,依舊在半導體制造中占據重要地位。臥式爐的臥式結構有利于氣體在爐管內均勻流動,使反應氣體能夠均勻地接觸晶圓表面,從而在晶圓上沉積出厚度均勻、質量穩定的薄膜,滿足半導體制造對薄膜高質量的要求。智能通風控制,保持臥式爐內空氣潔凈。
精確的溫度控制是臥式爐的關鍵技術之一。通常采用先進的自動化控制系統,結合高精度的溫度傳感器。溫度傳感器分布在爐內關鍵位置,實時監測爐內溫度,并將數據反饋給控制系統。控制系統運用PID控制算法,根據預設的溫度曲線,自動調節燃燒器的燃料供應量和空氣流量。當爐內溫度低于設定值時,控制系統增加燃料和空氣供應,提高燃燒強度;當溫度高于設定值時,則減少供應。一些高級臥式爐還具備多段溫度控制功能,可根據物料加熱過程的不同階段,如預熱、升溫、保溫、降溫等,靈活設置不同的溫度區域,滿足復雜工藝的精確溫度要求。臥式爐配備應急系統,保障生產安全無憂。廣州臥式爐 燒結爐
臥式爐與傳輸設備聯動,實現高效生產銜接。湖南臥式爐PSG/BPSG工藝
氣氛控制在半導體臥式爐應用中至關重要。不同的半導體材料生長與工藝需要特定氣氛環境,以防止氧化或引入雜質。臥式爐支持多種氣體的精確配比與流量控制,可根據工藝需求,靈活調節氫氣、氮氣、氬氣等保護氣體比例,同時能實現低至 10?3 Pa 的高真空環境。以砷化鎵單晶生長為例,精細控制砷蒸汽分壓與惰性保護氣體流量,能有效保障晶體化學計量比穩定,避免因成分偏差導致性能劣化。在化學氣相沉積工藝中,準確控制反應氣體的比例和流量,能夠決定沉積薄膜的成分和結構,進而影響薄膜的性能。臥式爐強大的氣氛控制能力,為半導體制造中各種復雜工藝提供了可靠的氣體環境保障。湖南臥式爐PSG/BPSG工藝