在產品全壽命周期中,失效分析以解決失效問題、確定根本原因為目標。通過對失效模式開展綜合性試驗分析,它能定位失效部位,厘清失效機理 —— 無論是材料劣化、結構缺陷還是工藝瑕疵引發的問題,都能被系統拆解。在此基礎上,進一步提出針對性糾正措施,從源頭阻斷失效的重復發生。
作為貫穿產品質量控制全流程的關鍵環節,失效分析的價值體現在對全鏈條潛在風險的追溯與排查:在設計(含選型)階段,可通過模擬失效驗證方案合理性;制造環節,能鎖定工藝偏差導致的批量隱患;使用過程中,可解析環境因素對性能衰減的影響;質量管理層面,則為標準優化提供數據支撐。 熱紅外顯微鏡結合多模態檢測(THERMAL/EMMI/OBIRCH),實現熱 - 電信號協同分析定位復合缺陷。制冷熱紅外顯微鏡廠家電話
致晟光電在推動產學研一體化進程中,積極開展校企合作。公司依托南京理工大學光電技術學院,專注開發基于微弱光電信號分析的產品及應用。雙方聯合攻克技術難題,不斷優化實時瞬態鎖相紅外熱分析系統(RTTLIT),使該系統溫度靈敏度可達0.0001℃,功率檢測限低至1uW,部分功能及參數優于進口設備。此外,致晟光電還與其他高校建立合作關系,搭建起學業-就業貫通式人才孵化平臺。為學生提供涵蓋研發設計、生產實踐、項目管理全鏈條的育人平臺,輸送了大量實踐能力強的專業人才,為企業持續創新注入活力。通過建立科研成果產業孵化綠色通道,高校的前沿科研成果得以快速轉化為實際生產力,實現了高校科研資源與企業市場轉化能力的優勢互補。
檢測用熱紅外顯微鏡批量定制熱紅外顯微鏡在 SiC/GaN 功率器件檢測中,量化評估襯底界面熱阻分布。
從傳統熱發射顯微鏡到致晟光電熱紅外顯微鏡的技術進化,不只是觀測精度與靈敏度的提升,更實現了對先進制程研發需求的深度適配。它以微觀熱信號為紐帶,串聯起芯片設計、制造與可靠性評估全流程。在設計環節助力優化熱布局,制造階段輔助排查熱相關缺陷,可靠性評估時提供精細熱數據。這種全鏈條支撐,為半導體產業突破先進制程的熱壁壘提供了扎實技術保障,助力研發更小巧、運算更快、性能更可靠的芯片,推動其從實驗室研發穩步邁向量產應用。
熱紅外顯微鏡和紅外顯微鏡并非同一事物,二者是包含與被包含的關系。紅外顯微鏡是個廣義概念,涵蓋利用0.75-1000微米紅外光進行分析的設備,依波長分近、中、遠紅外等,通過樣品對紅外光的吸收、反射等特性分析化學成分,比如識別材料中的官能團,應用于材料科學、生物學等領域。而熱紅外顯微鏡是其分支,專注7-14微米的熱紅外波段,無需外部光源,直接探測樣品自身的熱輻射,依據黑體輻射定律生成溫度分布圖像,主要用于研究溫度分布與熱特性,像定位電子芯片的熱點、分析復合材料熱傳導均勻性等。前者側重成分分析,后者聚焦熱特性研究。熱紅外顯微鏡助力科研人員研究新型材料的熱穩定性與熱性能 。
EMMI 技術基于半導體器件在工作時因電子 - 空穴復合產生的光子輻射現象,通過高靈敏度光學探測器捕捉微弱光子信號,能夠以皮安級電流精度定位漏電、短路等微觀缺陷。這種技術尤其適用于檢測芯片內部的柵極氧化層缺陷、金屬導線短路等肉眼難以察覺的故障,為工程師提供精確的失效位置與成因分析。
熱紅外顯微鏡(Thermal EMMI)則聚焦于器件發熱與功能異常的關聯,利用紅外熱成像技術實時呈現半導體器件的熱分布。在高集成度芯片中,局部過熱可能引發性能下降甚至損壞,熱紅外顯微鏡通過捕捉0.1℃級別的溫度差異,可快速鎖定因功率損耗、散熱不良或設計缺陷導致的熱失效隱患。兩者結合,實現了從電學故障到熱學異常的全維度失效診斷,極大提升了分析效率與準確性。 熱紅外顯微鏡的高精度熱檢測,為電子設備可靠性提供保障 。非制冷熱紅外顯微鏡成像儀
熱紅外顯微鏡通過熱成像技術,快速定位 PCB 板上的短路熱點 。制冷熱紅外顯微鏡廠家電話
紅外顯微鏡(非熱紅外)與熱紅外顯微鏡應用領域各有側重。前者側重成分分析,在材料科學中用于檢測復合材料界面成分、涂層均勻性及表面污染物;生物醫藥領域可識別生物組織中蛋白質等分子分布,輔助診斷;地質學和考古學中能鑒定礦物組成與文物顏料成分;食品農業領域則用于檢測添加劑、農藥殘留及農作物成分。熱紅外顯微鏡聚焦溫度與熱特性研究,電子半導體領域可定位芯片熱點、評估散熱性能;材料研究中測試熱分布均勻性與熱擴散系數;生物醫藥領域監測細胞代謝熱分布及組織熱傳導;工業質檢能檢測機械零件隱形缺陷,評估電池充放電溫度變化。二者應用有交叉,但分別為成分分析與熱特性研究。制冷熱紅外顯微鏡廠家電話