對于雙光子成像而言,離焦和近表面熒光激發是兩個比較大的深度限制因素,而對于三光子成像這兩個問題大大減小,但是三光子成像由于熒光團的吸收截面比2P要小得多,所以需要更高數量級的脈沖能量才能獲得與2P激發的相同強度的熒光信號。功能性3P顯微鏡比結構性3P顯微鏡的要求更高,它需要更快速的掃描,以便及時采樣神經元活動;需要更高的脈沖能量,以便在每個像素停留時間內收集足夠的信號。復雜的行為通常涉及到大型的大腦神經網絡,該網絡既具有局部的連接又具有遠程的連接。要想將神經元活動與行為聯系起來,需要同時監控非常龐大且分布普遍的神經元的活動,大腦中的神經網絡會在幾十毫秒內處理傳入的刺激,要想了解這種快速的神經元動力學,就需要MPM具備對神經元進行快速成像的能力。快速MPM方法可分為單束掃描技術和多束掃描技術。點掃描多光子顯微鏡可以深入樣本并捕捉高質量的圖像,但這個過程極其緩慢,因為圖像是一次形成一個點。美國bruker多光子顯微鏡單分子成像定位
多束掃描技術可以同時對神經元組織的不同位置進行成像對兩個遠距離(相距大于1-2mm)的成像部位,通常使用兩條單獨的路徑進行成像;對于相鄰區域,通常使用單個物鏡的多光束進行成像。多光束掃描技術必須特別注意激發光束之間的串擾問題,這個問題可以通過事后光源分離方法或時空復用方法來解決。事后光源分離方法指的是用算法來分離光束消除串擾;時空復用方法指的是同時使用多個激發光束,每個光束的脈沖在時間上延遲,這樣就可以暫時分離被不同光束激發的單個熒光信號。引入越多路光束就可以對越多的神經元進行成像,但是多路光束會導致熒光衰減時間的重疊增加,從而限制了區分信號源的能力;并且多路復用對電子設備的工作速率有很高的要求;大量的光束也需要更高的激光功率來維持近似單光束的信噪比,這會容易導致組織損傷。美國bruker多光子顯微鏡單分子成像定位使用雙光子顯微鏡觀察標本的時候,只有在焦平面上才有光漂白和光毒性。
多光子顯微鏡因擁有較深的成像深度,和較高的對比度在生物成像中有著重要的意義,但是它通常需要較高的功率。結合時間上展開的超短脈沖可以實現超快的掃描速度和較深的成像深度,但是其本身所利用的近紅外波段的光會導致分辨率較低。清華大學陳宏偉教授和北京大學席鵬研究員合作研究,結合了結構光成像和上轉化粒子,開發了一種基于多光子上轉化材料和時間編碼結構光顯微鏡的高速超分辨成像系統(MUTE-SIM)。它可以實現50MHz的超高的掃描速度,并突破了衍射極限,實現了超分辨成像。相較于普通的熒光顯微鏡,該顯微鏡提升了,并且只需要較低的激發功率。這種超快、低功率、多光子的超分辨技術,在分辨率高的生物深層組織成像上有著長遠的應用前景。
國內顯微鏡制造市場目前斷層嚴重。目前我國顯微鏡行業發展缺乏技術沉淀,20年以上經營積累的企業十分稀缺,深度精密制造、光學主要部件設計及工藝嚴重制約產業升級。目前中國顯微鏡中如多光子顯微鏡、共聚焦掃描和電子顯微鏡等主要集中在徠卡顯微系統、蔡司、尼康、奧林巴斯等國外企業。國內具備生產顯微鏡能力的企業屈指可數,若國內顯微鏡企業能打破技術壁壘,切入顯微鏡市場,企業的生產經營將騰躍至一個更高的格局。未來國產多光子激光掃描顯微鏡替代空間大。目前中國使用的多光子激光掃描顯微鏡幾乎被徠卡顯微系統、蔡司、尼康和奧林巴斯壟斷。國內有能力開始生產多光子激光掃描顯微鏡的企業極少,若國內能夠制造出高性能、高可靠性的多光子激光掃描顯微鏡,無異是會面臨極大的市場機遇。全球多光子顯微鏡主要消費地區分析,包括消費量及份額等。
針對雙光子熒光顯微鏡的特點,從理論上分析雙光子成像特點,并搭建一套時間、空間分辨率高,能實時、動態、多參數測量的雙光子熒光顯微鏡系統。具體系統應實現∶(1)能對不同染料的雙光子熒光進行探測;(2)用特定染料對樣品標記以后,能實現雙光子熒光的三維成像;(3)通過實驗的研究,改進雙光子熒光顯微成像系統;(4)在保證成像質量的前提下,簡化整個系統,使得實驗操作方便、安全。單光子激發熒光的過程,就是熒光分子吸收一個光子,從基態躍遷到激發態,躍遷以后,能量較大的激發態分子,通過內轉換把部分能量轉移給周圍的分子,自己回到比較低電子激發態的比較低振動能級。處于比較低電子激發態的比較低振動能級像在生物醫學光學成像研究中顯示了較大的優勢。而在顯微成像中,雙光子熒光顯微鏡憑其獨有的優點,成為研究細胞結構和功能檢測的重要工具。全球多光子顯微鏡主要生產地區分析,包括產量、產值份額等。美國飛秒激光多光子顯微鏡峰值功率密度
多光子顯微鏡中,極短的激光脈沖聚焦在樣品上的緊密點上,激發熒光團產生圖像。美國bruker多光子顯微鏡單分子成像定位
對于兩個遠距離(相距1-2mm以上)的成像部位,通常采用兩個**的路徑進行成像;對于相鄰區域,通常使用單個物鏡的多個光束進行成像。多光束掃描技術必須特別注意激發光束之間的串擾,這可以通過事后光源分離或時空復用來解決。事后光源分離法是指分離光束以消除串擾的算法;時空復用法是指同時使用多個激發光束,每個光束的脈沖在時間上被延遲,使不同光束激發的單個熒光信號可以暫時分離。引入的光束越多,可以成像的神經元越多,但多束會導致熒光衰減時間重疊增加,從而限制了分辨信號源的能力;并且復用對電子設備的工作速度要求很高;大量的光束也需要較高的激光功率來維持單束的信噪比,這樣容易導致組織損傷。美國bruker多光子顯微鏡單分子成像定位