機場與航空防雷工程設計規范機場防雷涵蓋跑道、導航臺、航站樓和航空器,需滿足國際民航組織(ICAO)附件14與國內MH/T5005《民用機場防雷技術規范》。跑道燈光系統是防護重點,燈具外殼采用導電鋁合金并與接地網連接,供電電纜穿金屬導管敷設,每隔50米安裝一個路燈型浪涌保護器(耐沖擊電流≥20kA)。導航臺(如VOR、DME)需建立全頻段電磁屏蔽室,天線饋線安裝帶通濾波器型SPD(通帶范圍匹配導航信號頻率),接地系統采用“單點接地+輻射狀接地體”,接地電阻≤1Ω以抑制地電位波動。航站樓金屬屋面作為接閃器,支撐結構與引下線焊接成網格(網格尺寸≤10m×10m),玻璃幕墻的金屬框架每三層與均壓環連接,防止側擊雷影響候機區電子設備。航空器防雷依靠機身表面的導電涂層和放電刷,地面維護時需確保加油口、通信天線等部位的靜電接地裝置有效連接。機場接地網采用“水平網格+垂直接地體”組合,面積覆蓋整個飛行區,通過降阻劑將接地電阻控制在4Ω以下。防雷設計需結合機場雷電監測系統(如多普勒雷達),實現對強雷暴天氣的實時預警與航班調度聯動。防雷裝置焊接處需打磨光滑(粗糙度Ra≤12.5μm)。江蘇防雷設備測試防雷工程技術規范
配合長效降阻劑(如石墨基導電模塊)降低接地電阻。對于無法開挖的巖石區域,利用山體裸露巖石表面敷設銅箔接地帶,通過鉆孔灌注樁實現多點接地。山區微電子設備(如氣象站、森林防火監控)需加強屏蔽與等電位連接,采用“金屬機柜+雙層屏蔽電纜+多級SPD”防護,接地體與設備距離不小于3米以減少地電位反擊。高雷區的建筑物年預計雷擊次數計算需乘以地形校正系數(1.5-2.0),提高防雷分類等級。特殊環境下的防雷工程需結合現場踏勘與仿真計算,突破傳統設計局限,確保極端條件下的防護效果。安徽特種防雷工程防雷工程常見問題古建筑施工團隊定期進行技術培訓,傳承瀕臨失傳的傳統建筑技藝。
古建筑防雷需遵循 “較小干預” 原則,避免破壞文物本體。接閃器采用與建筑風格協調的隱形設計,如將避雷帶偽裝為屋脊吻獸、垂獸等構件(內部暗藏 Φ12 熱鍍鋅圓鋼),支持卡用銅制仿古構件固定,間距≤0.8 米。引下線沿墻體隱蔽敷設,利用建筑柱體內木柱包裹絕緣層(如陶瓷套管),或在墻體陰角處采用與墻體同色的銅纜(外包防腐層)。接地裝置優先利用古建筑原有石質基礎中的金屬構件,人工接地體選擇銅包鋼接地極(直徑 16mm,長度 2.5 米),埋設于離建筑基礎 3 米外的綠化帶內,接地電阻≤10Ω。等電位連接時,金屬匾額、風鈴等裝飾構件通過柔性銅編織帶連接,禁止在古建筑墻體上鉆孔焊接。施工前需經文物主管部門審批,關鍵工序(如接閃器安裝)需有文物保護現場指導。
滿足易燃易爆環境的阻燃要求。電纜應穿鍍鋅鋼管敷設,進出裝置區處做密封隔離,防止雷電波引入危險區域。石化企業接地系統采用環形接地網,接地電阻不大于4Ω,重點區域(如控制室、DCS系統)需設置單獨的防靜電接地端子,與防雷接地體間距不小于5米。防雷檢測需結合防爆安全檢查,重點排查接閃器與設備連接的導電性、SPD的防爆性能和接地體的腐蝕情況。遵循GB50650《石油化工裝置防雷設計規范》,通過本質安全型設計與冗余防護措施,將雷電引發的風險降至比較低。防雷工程竣工圖應包含所有隱蔽工程節點。
接地系統作為防雷體系的重要組成部分,其施工質量直接決定雷電泄放效率。垂直接地體宜選用 50×50×5mm 熱鍍鋅角鋼,長度 2.5 米,間距不小于 5 米以避免屏蔽效應,埋設時需垂直打入地下,頂端距地面不小于 0.6 米。水平接地體采用 40×4mm 熱鍍鋅扁鋼,沿建筑物基礎外面閉合敷設,轉彎處應做成圓弧型(半徑≥100mm)以減少雷電流集膚效應影響。接地體焊接必須采用雙面施焊,扁鋼搭接長度≥2 倍寬度,圓鋼搭接長度≥6 倍直徑,焊口需做防腐處理,先涂防銹漆兩道再刷銀粉漆一道。接地電阻測試應在土壤電阻率比較低的雨后 72 小時進行,采用四極法測量,當阻值不滿足設計要求時,可采用換土法、降阻劑法等進行處理,確保工頻接地電阻≤10Ω(一類防雷建筑)或≤30Ω(三類防雷建筑)。古建筑施工在屋面苫背層處理中使用傳統灰漿配比,維持保溫防水性能。江蘇防雷產品安裝防雷工程是什么
古建筑施工使用礦物顏料進行彩繪補繪,確保色彩穩定性和歷史還原性。江蘇防雷設備測試防雷工程技術規范
對于木質結構古建筑,需在梁柱節點處做絕緣隔離,防止引下線與木材直接接觸引發電化學腐蝕。感應雷防護方面,對文物展陳的電子監控設備采用光纖傳輸替代銅纜,減少電磁感應風險;配電系統使用隔離變壓器 + 防雷插座的組合防護,避免雷電波侵入。技術創新包括納米導電涂料(涂刷于屋頂瓦片實現接閃功能)、無線監測傳感器(植入建筑內部實時監控接地狀態)。遵循 GB/T 32938《文物建筑防雷技術規范》,在保護文化遺產原真性的前提下,構建 “美觀化、隱蔽化、生態化” 的防雷保護體系。江蘇防雷設備測試防雷工程技術規范