材料科學領域,微流控技術在制備多相復合材料方面獨具優勢。ELVEFLOW 的微流控系統通過特殊設計的微通道結構和精確的流體控制,實現不同相材料在微觀尺度上的均勻混合與復合。以制備聚合物基納米復合材料為例,OB1 MK4 微流泵精確調節聚合物溶液和納米顆粒懸浮液的流速,使其在微通道內充分混合,COBALT 微流控分配閥可適時添加交聯劑等助劑,促進材料的復合與成型。這種方法制備的復合材料具有優異的力學性能、熱穩定性和阻隔性能,可廣泛應用于航空航天、汽車制造等high-end領域,推動材料性能的大幅提升和產業升級。微流控分配閥在聚合物合成中,精確調配原料微流體比例。湖北生物實驗室法國ELVEFLOW多通道壓力控制
生命研究中的細胞代謝研究需要精確控制細胞的培養環境。ELVEFLOW 微流控系統能夠為細胞代謝研究提供理想的平臺。通過微流控芯片,利用 OB1 MK4 微流泵精確控制細胞培養液的成分和流速,實時調節細胞周圍的營養物質和代謝產物濃度。例如,在研究tumor細胞的代謝特征時,可通過精確控制葡萄糖、氨基酸等營養物質的供應,觀察tumor細胞的代謝變化,揭示tumor細胞獨特的代謝模式,為開發針對tumor代謝的treatment藥物提供靶點,推動tumortreatment策略的創新。廣東精密儀器法國ELVEFLOW數字微流體精密真空泵協同微流控,在材料科學調控材料的微觀形貌。
醫藥研究方面,藥物研發是一項復雜且耗時的工作。ELVEFLOW 微流控為其帶來了新的突破。在藥物篩選環節,基于微流控的organ芯片技術可模擬人體organ的生理環境。以肝臟芯片為例,借助 ELVEFLOW 的精密真空泵營造穩定的負壓環境,配合 OB1 MK4 微流泵precise輸送培養液和藥物,模擬肝臟的血液灌注和代謝過程。研究人員能夠在芯片上觀察藥物對肝細胞的毒性反應、代謝轉化情況,快速篩選出具有潛在療效且低毒的藥物候選物,lead縮短藥物研發周期,降低研發成本。同時,微流控技術在藥物制劑研發中也表現出色,可精確制備納米級藥物載體,提高藥物的穩定性和生物利用度。
材料科學領域,微流控技術在合成具有特殊結構和功能的材料方面具有獨特優勢。ELVEFLOW 微流控系統可用于制備具有分級結構的材料。通過微流控芯片上的多級微通道和精確的流體控制,OB1 MK4 微流泵依次輸送不同的材料前驅體溶液,在微通道內實現材料的層層組裝和結構調控。例如,制備具有分級孔隙結構的多孔材料,這種材料在吸附、催化、組織工程等領域具有潛在應用價值,可有效提高材料在相關應用中的性能,拓展材料的應用范圍。例如,在研究tumor細胞的代謝特征時,可通過精確控制葡萄糖、氨基酸等營養物質的供應,觀察tumor細胞的代謝變化,揭示tumor細胞獨特的代謝模式,為開發針對tumor代謝的treatment藥物提供靶點,推動tumortreatment策略的創新。精密真空泵協同微流控,優化細胞培養中的營養物質輸送微流體路徑。
醫藥研究中,疫苗研發是預防疾病的重要手段。ELVEFLOW 微流控技術在疫苗研發過程中發揮著積極作用。在疫苗佐劑的制備方面,利用微流控系統精確控制佐劑材料的尺寸和結構。通過 OB1 MK4 微流泵和 COBALT 微流控分配閥,將佐劑成分按照精確比例混合,制備出具有特定粒徑和表面性質的納米佐劑。這些納米佐劑能夠有效增強疫苗的免疫原性,提高疫苗的預防效果。同時,微流控技術還可用于疫苗的質量控制和穩定性研究,確保疫苗的安全性和有效性,為全球公共衛生事業做出貢獻。微流控分配閥在流動化學中,精確控制反應物微流體的流量與混合。湖北生物實驗室法國ELVEFLOW多通道壓力控制
多通道壓力控制的 OB1MK4,在 RNA 測序中precise分配試劑,提高實驗效率。湖北生物實驗室法國ELVEFLOW多通道壓力控制
微流控在蛋白質結晶研究中的作用:蛋白質結晶是解析蛋白質結構的關鍵步驟,而 ELVEFLOW 的微流控技術為蛋白質結晶研究帶來了新的機遇。通過微流控分配閥和自主微流泵,能夠精確控制蛋白質溶液和沉淀劑的混合比例與流速,創造出更適合蛋白質結晶的微環境。在 COBALT 微流控系統中,結合精密真空泵去除溶液中的氣泡,避免對蛋白質結晶過程的干擾。實驗結果表明,使用 ELVEFLOW 微流控設備后,蛋白質結晶的成功率提高了 40%,且晶體質量更好,為蛋白質結構生物學研究提供了有力的技術支撐。湖北生物實驗室法國ELVEFLOW多通道壓力控制