在電力輸送的“關節”位置——電纜接頭處,溫度是反映其運行狀況的關鍵的指標之一。電纜接頭是整條線路的機械與電氣薄弱點,因安裝工藝、材料老化、接觸不良或過載等原因引發的接觸電阻增大,會迅速轉化為焦耳熱,導致溫度異常升高。電纜接頭溫度在線監測系統正是針對這一問題,利用前沿傳感技術對關鍵接頭進行實時、連續的溫度“把脈”,成為接頭過熱故障的“預警雷達”。該技術的關鍵在于部署高精度、高可靠性的溫度傳感器。目前主流方案包括:分布式光纖測溫(DTS):沿電纜或緊貼接頭敷設特殊傳感光纖,利用拉曼或布里淵散射效應,實現數公里范圍內連續空間溫度感知,精度可達±1°C,是長距離隧道、管廊監測的首要選擇,但成本會比較搞。無線測溫傳感器:采用微型化、低功耗設計,直接安裝在接頭表面或壓接點,通過無線(如LoRa、NB-IoT、Zigbee)或有線方式傳輸數據,尤其適用于分散、難以布線的接頭。紅外熱成像:適用于可觀測的接頭,通過固定式熱像儀進行非接觸掃描,提供直觀的溫度場圖像。在線溫度監測的價值遠不止于實時讀數:準確預警,防患未“燃”:系統設定多級溫度閾值(如環境溫升>15°C報警,>30°C跳閘),自動觸發告警。 局部放電相位圖譜(PRPD)需記錄放電幅值、頻次及相位分布特征。湖北電纜接頭溫度在線監測解決方案
電纜是城市能源供應的命脈,其絕緣系統的完整性至關重要。局部放電(PD)作為絕緣劣化早期靈敏的征兆,一旦發生在電纜本體或附件內部,其產生的電磁波或高頻電流信號可能通過金屬護層的接地線“泄露”出來。電纜護層局放在線監測技術正是基于這一原理,通過在護層接地線上安裝高靈敏度傳感器(如高頻電流互感器HFCT或超聲波傳感器),實現對電纜絕緣狀態的7×24小時無間斷“聽診”。這項技術的優勢在于其非侵入性與實時性。它無需停電,不影響電纜正常運行,持續捕捉護層接地線上流過的微弱局放脈沖信號。系統結合高速數據采集與智能算法,能在海量背景噪聲中識別。部署護層局放在線監測系統意義重大。它使得運維模式從“故障后搶修”轉變為“缺陷早發現、早干預”,避免絕緣故障導致的災難性停電及高昂維修成本。尤其適用于城市電網、海底電纜、大型工礦企業供電線路等對供電連續性要求極高的場景。通過長期監測數據的積累與分析,還能評估絕緣老化趨勢,是現代電網安全、可靠、智能運行的不可或缺的技術基石。簡言之,電纜護層局放在線監測如同為地下電力生命線配備了敏銳的“神經系統”,讓看不見的絕緣問題無處遁形,為電網的安全運行構筑起堅實的數字化防線。 廣西GIS局放在線監測解決方案電暈放電主要發生在高壓電極附近,放電脈沖集中在電壓波形的峰值附近。
溫度是電纜運行狀態的重要指標之一。電纜在運行過程中會產生熱量,尤其是在高負荷運行時,溫度升高可能會加速絕緣材料的老化,降低其絕緣性能,甚至導致電纜過熱損壞。因此,對電纜溫度的實時監測至關重要。目前,電纜溫度監測技術主要有接觸式和非接觸式兩種方式。接觸式溫度傳感器通常采用熱電偶或熱電阻,將其直接安裝在電纜表面或內部,通過測量電纜的溫度來反映其運行狀態。這種方式的優點是測量精度較高,但安裝過程較為復雜,且可能會對電纜的正常運行產生一定的影響。非接觸式溫度監測則主要利用紅外熱成像技術,通過紅外熱像儀對電纜進行掃描,能夠快速、直觀地獲取電纜的溫度分布情況。紅外熱成像技術不僅可以檢測到電纜的異常高溫點,還可以對電纜的整體運行狀態進行評估,具有檢測范圍廣、速度快、無需接觸等優點。然而,其成本相對較高,且受環境因素的影響較大。隨著技術的不斷發展,分布式光纖溫度傳感器(DTS)逐漸成為電纜溫度監測的主流技術。DTS利用光纖的溫度敏感特性,能夠實現對電纜沿線溫度的連續、實時監測,具有測量精度高、抗電磁干擾能力強、安裝方便等優點,為電纜的安全運行提供了可靠的保障。
電纜護層電流在線監測,特指對流過護套接地線或交叉互聯系統回流線的電流進行持續、實時的測量。這不同于護套環流(發生在護套之間),而是監測護套系統流向大地的電流路徑。這項監測的目標在于追蹤護套電流的實際值及其變化趨勢。通常,高精度電流互感器(CT)被安裝在護套的接地引線或交叉互聯箱的回流路徑上,實現對電流數據的采集。對護層電流(主要是接地線電流)進行在線監測,可提供以下有價值的運行狀態信息:評估護套絕緣完整性:護套對主絕緣和大地之間應保持良好的絕緣。當護套絕緣存在局部破損、老化或受潮時,可能形成非預期的對地泄漏通道或雜散電流路徑,導致接地線電流異常增大(超過設計值或歷史基線)。監測電流變化有助于提示潛在的護套絕緣劣化問題。識別多點接地傾向:理想的單點接地系統,護套電流應相對穩定且較小(主要為電容電流)。如果監測到接地線電流且持續地升高,這往往是護套系統存在多點接地傾向或故障的重要指示信號。多點接地是產生有害護套環流的主要原因之一。發現雜散電流干擾:在某些環境(如靠近直流系統、電氣化鐵路),電纜金屬護套可能成為雜散電流的流入或流出路徑。這會反映在接地線電流上。 套管末屏電流監測診斷套管介質損耗異常。
局部放電(PD)是變壓器內部絕緣劣化的征兆之一,如同絕緣系統發出的“求救信號”。變壓器局放在線監測技術通過實時捕捉、分析這些微弱的放電脈沖,在絕緣故障引發災難性后果(如擊穿)之前實現預警和監測,是電力設備安全運行的“前沿哨兵”。監測原理與技術方案:變壓器內部放電會產生豐富的物理效應:電磁脈沖:放電瞬間產生納秒級高頻電流脈沖和電磁波。超聲波:放電點氣體膨脹或收縮產生壓力波。主流監測方法根據感知原理部署:超高頻(UHF)法-主流且靈敏:原理:在變壓器箱壁或內置傳感器(如盆式絕緣子處),捕獲300MHz-3GHz頻段的電磁波信號。部署:外置天線(非侵入)或內置傳感器(需預留接口)。高頻電流互感器(HFCT)法:原理:在變壓器中性點、鐵芯/夾件接地線或套管末屏接地線上安裝HFCT,捕捉沿接地線傳播的放電脈沖電流。優勢:安裝相對簡便,成本較低,可監測與接地線耦合的放電。聲學(AE)法:原理:在變壓器外殼多點安裝超聲波傳感器,接收放電產生的聲波信號。聯合監測(趨勢):結合UHF+AE或UHF+HFCT,利用多物理量信息互補,提升診斷可靠性。 變壓器綜合在線監測涵蓋油色譜、局放、溫度等多維度參數。陜西電纜局部放電在線監測廠家直銷
脈沖電流法通過檢測接地線上的脈沖電流信號來監測局部放電。湖北電纜接頭溫度在線監測解決方案
脈沖電流法是局部放電(局放)監測中常用的方法之一,其原理基于局部放電過程中產生的脈沖電流信號。當絕緣材料內部出現局部放電時,會在放電瞬間產生一個短暫的電荷轉移,這個電荷轉移會在設備的接地線上感應出一個脈沖電流信號。脈沖電流法通過在設備的接地線上安裝高阻抗的耦合電容或電感傳感器,檢測這些脈沖電流信號。傳感器將感應到的脈沖電流信號轉換為電壓信號,并通過放大器放大后傳輸到監測系統進行分析。脈沖電流法的優點是靈敏度高,能夠檢測到微弱的局放信號,且測量電路簡單,抗干擾能力較強。然而,其缺點是容易受到外部電磁干擾的影響,尤其是在復雜電磁環境中,可能會導致誤報。此外,脈沖電流法只能檢測到局放信號的存在,但難以準確定位局放的位置。盡管如此,脈沖電流法仍然是目前應用常用的局放監測方法之一,應用于電力設備如變壓器、GIS、電纜等的局放監測中。 湖北電纜接頭溫度在線監測解決方案