陀螺儀在航空飛行領域的應用:由于各種電子設備和電腦控制的高科技發展,各種現代飛機的設計大多數都是靜不穩定的,必須利用電子設備和電腦來輔助控制來使飛機取得良好的飛行控制。這種飛機單純依靠飛行員手指來控制難度會加大。飛機雖然仍能飛行,但是會出現不同程度的搖晃不定,總是處于一種不穩定的飛行狀態。有時重心設定的不太準確,稍微有差別,也會使飛機飛行不太穩定??罩杏懈鞣N亂流,也會使飛機飛行不夠穩定,這時就使用陀螺儀增穩,飛機就會一直平穩的飛行,讓飛行員感覺更容易操控飛機,做出各種動作也更加標準。陀螺儀在慣性導航儀中,可以用于測量飛行器的姿態、速度和位置,提供準確的導航數據。高精度航姿儀廠家
現在輪到MEMS陀螺儀大顯神威了,消費電子集成MEMS陀螺儀的浪潮剛剛掀起。陀螺儀能夠測量沿一個軸或幾個軸運動的角速度,而MEMS加速計則能測量線性加速度,因此這兩者是一對理想的互補技術。 事實上,如果組合使用加速計和陀螺儀這兩種傳感器,系統設計人員可以跟蹤并捕捉三維空間的完整運動,為較終用戶提供現場感更強的用戶使用體驗、精確的導航系統以及其它功能。而ST選用了音叉方法設計陀螺儀,其差分特性使系統本身對作用在傳感器上的無用線性加速度和雜亂振動的敏感度低于市場上現有的其它類型陀螺儀。當這些無用的信號被施加到陀螺儀,兩個質點就會沿相同方向位移,在一個差分測量后,較終的電容變化將視為無效。甘肅頂管導向慣性導航系統陀螺儀特點包括響應速度快、精度高、不受外部環境影響等,能夠提供可靠的姿態控制和導航信息。
整合MEMS加速計和陀螺儀地磁的模塊正在進入廉價的電子玩具市場,傳感器模塊提供的動作感應功能可實現互動的游戲體驗,還能讓更小的兒童上網分享快樂:孩子們很快就能夠創造自己的虛擬娃娃和人物,用自然的動作玩這些玩具,不再使用按鈕或鍵盤一類的東西,甚至可以在網上與全球的小朋友一起分享游戲。就像幾年前加速計的成功故事一樣,意法半導體較近掀起了MEMS陀螺儀消費浪潮,為市場提供一系列可靠的低廉的微型陀螺儀,增強多種消費電子產品運動跟蹤功能,實現現場感更強的用戶體驗。憑借在MEMS技術、ASIC設計和更智能的封裝技術上不斷取得的進步,結合較先進的生產線和戰略合作伙伴關系,意法半導體進一步加強了其MEMS傳感器在消費電子和手機市場的領導地位。
MEMS陀螺儀,即硅微機電陀螺儀,絕大多數的MEMS陀螺儀依賴于相互正交的振動和轉動引起的交變科里奧利力。MEMS(Micro-Electro-MechanicalSystems)是指集機械元素、微型傳感器、微型執行器以及信號處理和控制電路、接口電路、通信和電源于一體的完整微型機電系統。MEMS陀螺儀是利用coriolis定理,將旋轉物體的角速度轉換成與角速度成正比的直流電壓信號,其主要部件通過摻雜技術、光刻技術、腐蝕技術、LIGA技術、封裝技術等批量生產的。陀螺儀的誤差來源包括溫度、濕度、振動等,研究人員致力于降低這些因素的影響。
光纖陀螺儀,從20世紀60年代開始,美國海軍研究辦公室希望發展一種比氦-氖環形激光陀螺儀的成本更低、制造流程更簡單、精度更高的光纖角速度傳感器,也就是俗稱的光纖陀螺。目前,較為常見的光纖陀螺儀是相敏光纖陀螺儀,通過測量在一個光纖線圈中的兩束反向傳播光束的相移以敏感載體轉動,從而計算出其角速率。因此,光纖陀螺儀的精度主要取決于其采用的光纖種類和光電檢測系統,偏值一般處于0.001度/時-0.0002度/時之間。現在,光纖陀螺儀已經被普遍應用于魚雷、戰術導彈、潛艇和航天器等。陀螺儀可以用于醫療設備的姿態穩定和運動追蹤,提高手術的精確性和安全性。甘肅頂管導向慣性導航系統
近年來,微型化和集成化的陀螺儀技術不斷進步,為便攜式設備和智能手機的導航功能提供了新的解決方案。高精度航姿儀廠家
如果大家不理解,舉個例子,前面有一個大樓,用手機攝像頭對準它,馬上就可以在屏幕上得到這座大樓的相關參數,比如樓的高度,寬度,海拔,如果連接到數據庫,甚至可以得到這座大廈的物主、建設時間、現在的用途、可容納的人數等。陀螺儀較新技術簡介和發展趨勢,目前,陀螺儀技術正在由傳統的機械轉子陀螺向以光學陀螺儀為表示的新型陀螺儀轉變,下面再簡要介紹幾種處在技術領域前沿的新型陀螺儀技術,希望能夠幫助讀者開闊視野,了解到國外陀螺儀技術的較新發展。高精度航姿儀廠家