器官芯片是體外培養模型,橋接傳統的體外2D模型和體內模型之間的鴻溝。通過迷你化形成人為的微環境,極盡可能地模擬人體內的生理環境,用于細胞生長,從而將細胞對藥物/化合物產生的反應轉化成臨床數據。典型特征是在液流環境下對人源細胞進行3D培養,復制自然的組織形態、細胞之間相互作用;相比于細胞系更傾向于用原代細胞,并且整合液流系統,從而提高營養的供給、以及管理代謝的廢物。一旦開始在其他人造器官芯片上測試病毒和細菌,下一步可能是在器官芯片環境中測試藥物與病原體的相互作用。英國CNBio的Physiomimix器官芯片正是基于實現此遠大目標而應運而生。器官芯片的應用還需要遵循偷規范和實驗原則,如知情同意\保護個人隱私等。智能器官芯片的主要應用
逐年增加的文獻發表說明了科學家對器官芯片的關注度增加??梢钥闯鰜?,無數的器官芯片公司獲得資助而成立,比如CN-Bio。我們現在看到來自于學術界、器官芯片供應商、和藥物企業所發表的文獻。CN-Bio也正為這一領域做出貢獻,一篇英國皇家學院的關注NASH的文章正被發表,還有3月初CN和FDA聯合發表的文章,與其藥物評價研究中心( Centre for Drug Evaluation Research ,CDER)合作的重點是使用肝臟MPS作為檢測人類藥物清chu率和藥物引起的肝損傷(DILI)的工具。Emulate CN-bio器官芯片乙肝器官芯片的制備還需考慮其對細胞與基質之間的相互作用和信號傳遞的影響。
許多器官芯片研究只能通過基于服務的產品提供,或者需要大型、復雜的設備安裝,伴隨著設備供應商提供深入的培訓和持續的zhuan jia協助才能實現。來自英國CNBio的PhysioMimix器官芯片提供了一種現成的解決方案,使研究人員能夠快速建立分析方法并獲得結果。具備標準的實驗室技能即可進行設備的安裝,培養模仿人體組織結構和功能的微組織,并進行分析和實驗。PhysioMimix器官芯片可實現連續生氧并自動控制微流體,提供全天候細胞培養。液體流量可以編程,使可進行長時辰的實驗設計,模擬動態生物學過程以及藥代動力學控制,只需一鍵啟動即可實現,將用戶干預極大減少,科學家無需加班或輪班。
劍橋,英國,2022年7月19日:設計和制造單qiguan和多qiguan微物理系統(MPS)的先進器官芯片(OOC)公司CNBiotoday宣布在劍橋科技園開設新的實驗室設施,專門用于合同研究服務(CRO)。隨著OOC技術在藥物發現和開發計劃中獲得吸引力,該公司的實驗室空間增加了一倍,以應對不斷增長的OOC服務市場需求。CNBio的合同研究服務(CRO)利用了該公司的下一代MPS技術、十年的專業知識和在不斷增長的應用組合中的良好記錄,包括:藥物代謝、安全毒理學、Zhong Liu學和非酒精性脂肪性肝炎(NASH)。在幾周內為客戶生成可操作的數據,該團隊與研究人員合作創建了一個實驗設計,提供了獨特的人類可轉化的見解,同時與動物研究相比節省了大量時間和成本器官芯片的操作還需要遵循相關實驗操作規范和安全管理要求。
作為微流控芯片中的重要分支--器官芯片在2016年被世界經濟論壇--達沃斯論壇評為shida新興技術之一,與無人駕駛汽車及石墨烯等二維材料并列。器官芯片是繼細胞芯片和組織芯片之后一種更接近仿生體系的模式。它的基本設計是一種結構、可包含人體細胞、組織、血液、脈管、組織-組織界面、器guan以及器guan的微環境。這里,器guan微環境指的是器guan周邊的其他細胞,各種介質,以及不同的物理力。微流控器官芯片有望部分替代小鼠等動物模型,用于驗證候選藥物,開展藥物毒理學和藥理作用研究。英國CNBio的Physiomimix器官芯片正是基于實現此遠大目標而應運而生。更多CN-BIO微流控器官芯片相關信息,歡迎咨詢上海曼博生物!好的生長因子對于可復制、生理相關的類qiguan培養十分重要。多器官芯片*近進展
器官芯片的制備需考慮其對生物材料的兼容性和穩定性.智能器官芯片的主要應用
英國CNBio的PhysioMimix器官芯片可在一系列培養條件下進行先進的長時間體外肝臟培養以及進行不同階段NAFLD/NASH疾病模型的構建。此生理相關的實驗模型旨在幫助加速針對該慢性肝病的新療法研究的進程。使用器官芯片,我們已經開發出了一種完整的人類灌注體外NAFLD模型,利用3D培養的原代人肝細胞(PHH)來模仿肝臟的微體系結構。細胞使用高濃度的游離脂肪酸培養長達四周,以誘導細胞內甘油三酸酯(脂肪)累積并模仿肝脂肪變性。研究了該模型中細胞的CYP酶活性變化,以及對已知的肝毒性劑在IC:50濃度附近給藥時的影響。更多關于器官芯片相關產品信息,歡迎咨詢上海曼博生物!智能器官芯片的主要應用