冰蓄冷系統通過“移峰填谷”轉移電力高峰負荷,可明顯減少燃煤機組的啟停調峰頻次,從而降低二氧化碳排放。以1MW?h冷量為計算單位,該系統相較常規空調系統可減排0.8噸CO?。若在全國范圍內推廣應用,年減排量將達到千萬噸級別,對實現“雙碳”目標具有重要推動作用。此外,冰蓄冷技術減少的尖峰負荷能夠延緩電網擴容壓力。這意味著可間接節約土地資源(如變電站建設占地)及輸電線路投資,降低電網基礎設施的建設成本。這種“節能+減排+降本”的綜合效應,使冰蓄冷系統不僅成為建筑領域的節能手段,更成為優化城市能源結構、推動綠色電網發展的重要支撐。從環境效益看,其減排貢獻相當于種植百萬畝森林;從經濟角度,延緩電網擴容可為城市建設節省數十億元投資,實現了生態效益與經濟效益的深度融合。冰蓄冷技術的城市熱島緩解效應,可使地表溫度下降0.8-1.2℃。浙江動態冰蓄冷參考
中國向非洲國家輸出冰蓄冷技術以應對電力短缺難題。該技術利用非洲多地豐富的風能、太陽能等可再生能源,在夜間電網負荷低谷時段制冰儲冷,白天釋冷供冷,既緩解電網壓力,又減少柴油發電機使用。例如在肯尼亞內羅畢實施的冰蓄冷區域供冷項目,配套當地風電場資源,夜間利用風電驅動制冷機組制冰,將冷量儲存于大型蓄冷槽中;白天向 5 萬平方米的商業區集中供冷,替代傳統分散式空調。項目運行后,商業區日均減少柴油消耗 1.2 噸,電網峰荷時段供電壓力降低 15%,同時供冷成本較傳統方案下降 20%。這類項目通過技術適配與可再生能源結合,既解決非洲地區電力供應不穩定的問題,也為當地建筑節能提供可持續的解決方案,推動綠色低碳合作落地。中國臺灣小型冰蓄冷改造冰蓄冷技術的醫療場景應用,手術室溫度波動控制在±0.5℃以內。
在大型城市綜合體或產業園區中,冰蓄冷技術可作為區域供冷系統的關鍵構成。通過集中制冰、分布式供冷的模式,能夠發揮規模化節能優勢。以廣州大學城區域供冷項目為例,其采用冰蓄冷技術覆蓋 10 所高校及商業設施,相較傳統分散式空調系統節能率超 30%,每年可減少約 5 萬噸 CO?排放。這種區域化應用模式不僅降低了單體建筑的設備投資與運維成本,還通過集中調控優化冷量分配,實現能源的高效利用。同時,規模化的蓄冷設施可與電網調度協同,進一步強化 “移峰填谷” 效應,為城市集中供能系統的低碳化轉型提供了可復制的實踐范例,尤其適用于功能復合、冷負荷集中的大型園區場景。
日本 JIS 標準從安全性與耐久性角度對冰蓄冷系統作出嚴格規定。在設備安全方面,蓄冷槽需通過 1.5 倍工作壓力的水壓試驗,以確保容器在高壓工況下無泄漏風險,保障系統運行安全;控制系統需具備斷電自保護功能,在突發停電時自動保存運行數據并啟動保護機制,避免設備損壞。耐久性層面,防凍液需滿足 JIS K2234 標準的生物降解性要求,減少環境危害的同時,降低對管道的腐蝕速率,延長系統使用壽命。這些標準通過量化測試指標與性能要求,為冰蓄冷系統的設計、制造和維護提供了技術依據,確保設備在長期運行中保持穩定性能。廣東楚嶸冰蓄冷技術結合熱回收,融冰余熱用于生活熱水供應。
阿里巴巴千島湖數據中心依托獨特的自然環境與技術創新,構建了低能耗冷卻體系,其PUE(電能利用效率)低至1.17,接近理論極限值。技術路徑聚焦三方面:冬季制冰存儲:當湖水溫度低于10℃時,利用深層湖水自然冷源直接制冰,將冷量存儲于蓄冷槽,充分利用冬季自然冷能;夏季復合供冷:采用冰水混合物與湖水串聯供冷模式,先通過冰蓄冷系統釋放冷量降溫,再利用湖水進一步換熱,減少機械制冷啟動頻次;余熱循環利用:將服務器散熱通過熱交換系統回收,用于區域供暖,實現“制冷-散熱”的能源閉環,全過程零碳排放。該數據中心通過自然冷源與冰蓄冷技術的深度結合,打破了傳統數據中心高能耗瓶頸,為綠色數據中心建設提供了“自然+蓄能”的創新范式。廣州大學城區域供冷項目采用冰蓄冷,年減排二氧化碳5萬噸。安徽綜合冰蓄冷裝修
冰蓄冷技術的電力現貨市場應對策略,通過需求響應補償電價差收窄。浙江動態冰蓄冷參考
據MarketsandMarkets數據顯示,2024年全球冰蓄冷市場規模已達38億美元,預計到2029年將增長至62億美元,期間復合年增長率(CAGR)為10.2%。亞太地區在全球市場中占據重要地位,貢獻超過50%的份額,成為推動市場增長的關鍵區域。其中,中國因“雙碳”目標下政策對蓄冷技術的支持,以及超高層建筑和數據中心的規模化應用,成為亞太地區的主要增長動力;印度隨著基礎設施建設升級,對節能空調系統需求激增,冰蓄冷技術在商業建筑領域的應用快速拓展;東南亞國家如新加坡、馬來西亞等,依托區域供冷項目和可再生能源結合示范工程,推動市場持續擴張。全球市場的增長態勢,反映出冰蓄冷技術在節能降碳和電網優化方面的綜合價值正獲得普遍認可。編輯分享介紹一下冰蓄冷技術的工作原理冰蓄冷技術相比傳統空調系統的優勢是什么?提供一些冰蓄冷系統的應用案例浙江動態冰蓄冷參考