氧化石墨烯(GO)表面有羥基、羧基、環氧基、羰基等親水性的活性基團,且片層間距較大,使得氧化石墨烯具有超大比表面積和***的離子交換能力。GO的結構與水通蛋白相類似,而蛋白質本身具有優異的離子識別功能,由此可推斷氧化石墨烯在分離、過濾及仿生離子傳輸等領域可能具有潛在的應用價值1-3。GO經過超聲可以穩定地分散在水中,再通過傳統成膜方法如旋涂、滴涂和真空抽濾等處理后,GO微片可呈現肉眼可見的層狀薄膜堆疊,在薄膜的層與層之間形成具有選擇性的二維納米通道。除此之外,GO由于片層間存在較強的氫鍵,力學性能優異,易脫離基底而**存在。基于GO薄膜制備方法簡單、成本低、高通透性和高選擇性等優點,其在水凈化領域具有廣闊的應用空間。氧化石墨烯(GO)的比表面積很大,厚度小。綠色氧化石墨改性
氧化石墨烯(GO)與石墨烯的另一個區別是在吸收紫外/可見光后會發出熒光。通常可以在可見光波段觀測到兩個峰值,一個在藍光段(400-500nm),另一個在紅光段(600-700nm)。關于氧化石墨烯發射熒光的機理,學界仍有爭論。此外,氧化石墨烯的熒光發射會隨著還原的進行逐漸變化,在輕度化學還原過程中觀察到GO光致發光光譜發生紅移,這一發現與其他人觀察到的發生藍移的現象相矛盾。這從另一個方面說明了氧化石墨烯結構的復雜性和性質的多樣性。無污染氧化石墨導熱膜調控反應過程中氧化條件,減少面內大面積反應,減少缺陷,提升還原效率。
氧化石墨烯同時具有熒光發射和熒光淬滅特性,廣義而言,其自身已經可以作為一種傳感材料,在生物、醫學領域的應用充分說明了這一點。經過功能化的氧化石墨烯/還原氧化石墨烯在更加***的領域內得到了應用,特別在光探測、光學成像、新型光源、非線性器件等光電傳感相關領域有著豐富的應用。光電探測器是石墨烯問世后**早應用的領域之一。2009年,Xia等利用機械剝離的石墨烯制備出了***個石墨烯光電探測器(MGPD)[2],如圖9.6,以1-3層石墨烯作為有源層,Ti/Pd/Au作源漏電極,Si作為背柵極并在其上沉淀300nm厚的SiO2,在電極和石墨烯的接觸面上因為功函數的不同,能帶會發生彎曲并產生內建電場。
氧化石墨烯(GO)的光學性質與石墨烯有著很大差別。石墨烯是零帶隙半導體,在可見光范圍內的光吸收系數近乎常數(~2.3%);相比之下,氧化石墨烯的光吸收系數要小一個數量級(~0.3%)[9][10]。而且,氧化石墨烯的光吸收系數是波長的函數,其吸收曲線峰值在可見光與紫外光交界附近,隨著波長向近紅外一端移動,吸收系數逐漸下降。對紫外光的吸收(200-320nm)會表現出明顯的π-π*和n-π*躍遷,而且其強度會隨著含氧基團的出現而增加[11]。氧化石墨烯(GO)的光響應對其含氧基團的數量十分敏感[12]。隨著含氧基團的去除,氧化石墨烯(GO)在可見光波段的的光吸收率迅速上升,**終達到2.3%這一石墨烯吸收率的上限。靜電作用的強弱與氧化石墨烯表面官能團產生的負電荷相關。
RGO制備簡單、自身具有受還原程度調控的帶隙,可以實現超寬譜(從可見至太赫茲波段)探測。氧化石墨烯的還原程度對探測性能有***影響,隨著氧化石墨烯還原程度的提高,探測器的響應率可以提高若干倍以上。因此,在CVD石墨烯方案的基礎上,研究者開始嘗試使用還原氧化石墨烯制備類似結構的光電探測器。對于RGO-Si器件,帶間光子躍遷以及界面處的表面電荷積累,是影響光響應的重要因素[72]。2014年,Cao等[73]將氧化石墨烯分散液滴涂在硅線陣列上,而后通過熱處理對氧化石墨烯進行熱還原,制得了硅納米線陣列(SiNW)-RGO異質結的室溫超寬譜光探測器。該探測器在室溫下,***實現了從可見光(532nm)到太赫茲波(2.52THz,118.8mm)的超寬譜光探測。在所有波段中,探測器對10.6mm的長波紅外具有比較高的光響應率可達9mA/W。GO的摻量對于水泥復合材料的提升效果也有差異。附近哪里有氧化石墨導電
氧化石墨片層的厚度約為1.1 ± 0.2 nm。綠色氧化石墨改性
氧化石墨烯表面的-OH和-COOH等官能團含有孤對電子,可作為配位體與具有空的價電子軌道的金屬離子發生絡合反應,生成不溶于水的絡合物,從而有效去除溶液中的金屬離子。Madadrang等45制得乙二胺四乙酸/氧化石墨烯復合材料(EDTA-GO),通過研究發現其對金屬離子的吸附機制主要為絡合反應,即氧化石墨烯的表面官能團與水中的金屬離子反應形成復雜的絡合物,具體過程如圖8.7所示,由于形成的絡合物不溶于水,可通過沉淀等作用分離去除水中的金屬離子。綠色氧化石墨改性