SLM是目前應(yīng)用廣的金屬3D打印技術(shù),其主要是通過高能激光束(功率通常為200-1000W)逐層熔化金屬粉末,形成致密實(shí)體。工藝參數(shù)如激光功率、掃描速度和層厚(通常20-50μm)需精確匹配:功率過低導(dǎo)致未熔合缺陷,過高則引發(fā)飛濺和變形。為提高效率,多激光系統(tǒng)(如四激光同步掃描)被用于大尺寸零件制造。SLM適合復(fù)雜薄壁結(jié)構(gòu),例如航空航天領(lǐng)域的燃油噴嘴,傳統(tǒng)工藝需20個(gè)部件組裝,SLM可一體成型,減少焊縫并提升耐壓性。然而,殘余應(yīng)力控制仍是難點(diǎn),需通過基板預(yù)熱(比較高達(dá)500℃)和支撐結(jié)構(gòu)優(yōu)化緩解開裂風(fēng)險(xiǎn)。金屬注射成型(MIM)技術(shù)結(jié)合了粉末冶金和塑料注塑的工藝優(yōu)勢(shì)。云南鈦合金粉末品牌
鈦合金是3D打印領(lǐng)域廣闊使用的金屬粉末之一,因其高的強(qiáng)度重量比、耐腐蝕性和生物相容性而備受青睞。通過選擇性激光熔化(SLM)技術(shù),鈦合金粉末被逐層熔融成型,可制造復(fù)雜航空部件如渦輪葉片、發(fā)動(dòng)機(jī)支架等。其致密度可達(dá)99.5%以上,力學(xué)性能接近鍛造材料。近年來,科研團(tuán)隊(duì)通過優(yōu)化粉末粒徑(15-45μm)和工藝參數(shù)(激光功率、掃描速度),進(jìn)一步提升了零件的抗疲勞性能。此外,鈦合金在醫(yī)療植入物(如人工關(guān)節(jié))領(lǐng)域的應(yīng)用也推動(dòng)了低氧含量(<0.1%)粉末的開發(fā)。廣西模具鋼粉末咨詢粉末冶金技術(shù)中的等靜壓成型工藝可制備具有各向同性特征的金屬預(yù)成型坯。
金屬粉末的球形度直接影響鋪粉均勻性和打印質(zhì)量。球形顆粒(球形度>95%)流動(dòng)性更佳,可通過霍爾流量計(jì)測(cè)試(如鈦粉流速≤25s/50g)。非球形粉末易在鋪粉過程中形成空隙,導(dǎo)致層間結(jié)合力下降,零件抗拉強(qiáng)度降低10%-30%。此外,衛(wèi)星粉(小顆粒附著在大顆粒表面)需通過等離子球化處理去除,否則會(huì)阻礙激光能量吸收。以鋁合金AlSi10Mg為例,球形粉末的堆積密度可達(dá)理論值的60%,而不規(guī)則粉末40%,明顯影響終致密度(需>99.5%才能滿足航空標(biāo)準(zhǔn))。因此,粉末形態(tài)是材料認(rèn)證的主要指標(biāo)之一。
納米級(jí)金屬粉末(粒徑<100nm)使微尺度3D打印成為可能。美國(guó)NanoSteel的Fe-Ni納米粉通過雙光子聚合(TPP)技術(shù)打印出直徑10μm的微型齒輪,精度達(dá)±200nm。應(yīng)用包括MEMS傳感器和微流控芯片:銀納米粉打印的電路線寬1μm,電阻率1.6μΩ·cm,接近塊體銀性能。但納米粉的儲(chǔ)存與處理極具挑戰(zhàn):需在-196℃液氮中防止氧化,打印環(huán)境需<-70℃。日本TDK公司開發(fā)的納米晶粒定向技術(shù),使3D打印磁性件的矯頑力提升至400kA/m,用于微型電機(jī)效率提升15%。
水霧化法生產(chǎn)的316L不銹鋼粉末成本較低,但流動(dòng)性略遜于氣霧化制備的粉末。
NASA“Artemis”計(jì)劃擬在月球建立3D打印基地,將要利用月壤提取的鈦、鋁粉制造居住艙,抗輻射性能較地球材料提升5倍?;鹦窃毁Y源利用(ISRU)中,在赤鐵礦提取的鐵粉可通過微波燒結(jié)制造工具,減少地球補(bǔ)給依賴。深空探測(cè)器將搭載電子束打印機(jī),利用小行星金屬資源實(shí)時(shí)修復(fù)船體。技術(shù)障礙包括:① 宇宙射線引發(fā)的粉末帶電;② 微重力鋪粉精度控制;③ 極端溫差(-150℃至+200℃)下的材料穩(wěn)定性。預(yù)計(jì)2040年實(shí)現(xiàn)地外全流程金屬制造。金屬材料微觀組織的各向異性是3D打印技術(shù)面臨的重要科學(xué)挑戰(zhàn)之一。吉林模具鋼粉末哪里買
貴金屬粉末(如銀、金)在珠寶3D打印中實(shí)現(xiàn)微米級(jí)精度,能快速成型傳統(tǒng)工藝難以加工的鏤空貴金屬飾品。云南鈦合金粉末品牌
3D打印多孔鉭金屬植入體通過仿骨小梁結(jié)構(gòu)(孔隙率70%-80%),彈性模量匹配人體骨骼(3-30GPa),促進(jìn)骨整合。美國(guó)4WEB Medical的脊柱融合器采用梯度孔隙設(shè)計(jì),術(shù)后6個(gè)月骨長(zhǎng)入率達(dá)95%。另一突破是鎂合金(WE43)可降解血管支架:通過調(diào)整激光功率(50-80W)控制降解速率,6個(gè)月內(nèi)完全吸收,避免二次手術(shù)。挑戰(zhàn)在于金屬離子釋放控制:FDA要求鎂支架的氫氣釋放速率<0.01mL/cm2/day,需表面涂覆聚乳酸-羥基乙酸(PLGA)膜層,工藝復(fù)雜度增加50%。