且所述導熱基座1對應于儲能箱體10凹設有油脂凹槽12,所述油脂凹槽12內填充有導熱硅脂。通過導熱硅脂能增加導熱基座1與儲能箱體10之間的傳熱效率,且還能夠適當對儲能箱體10進行減震。所述導熱基座1上設置有若干支撐座11,所述導熱基座1通過支撐座11連接于承載體上,且所述支撐座11的底面至導熱基座1的間距大于或等于散熱翅片組4的底面至導熱基座1的間距;所述散熱翅片組4通過支撐座11接觸或間距于承載面,風冷氣流通過時,能夠同時攜帶電池箱上的部分熱量,進一步的保證電池箱和電池管理系統的穩定工作環境。以上所述*是本實用新型的推薦實施方式,應當指出:對于本技術領域的普通技術人員來說,在不脫離本實用新型原理的前提下,還可以做出若干改進和潤飾,這些改進和潤飾也應視為本實用新型的保護范圍。為光伏發電系統離網運行模式下提供能量儲備。杭州助力車儲能模組
所述三相支路直流母線電容輸出端的正極通過直流接觸器進行連接;所述三相支路直流母線電容輸出端的負極通過直流接觸器進行連接。參照圖3,儲能變流器每相單獨連接變壓器隔離,將交流電直接變換為直流電為電池充電,同時實現電池放電并網,儲能變流器能夠實現直流輸出電壓的調節以及電流的調節功能。儲能變流器直流端有三組連接端子,每組端子可以實現與電池連接。以a相電路結構為例,變壓器t1起到隔離及變壓作用;交流濾波器濾除交流emc干擾;交流軟啟動回路由主交流接觸器、輔助交流接觸器及軟啟動電阻組成,實現上電時對后級直流母線電容的緩慢充電作用,避免上電瞬間產生大電流對儲能變流器及電網的沖擊;lc濾波回路由交流濾波電感及濾波電容組成,將橋式逆變電路產生的spwm波的高頻成份濾除,得到光滑的交流波形;橋式逆變電路由igbt組成,igbt連接直流母線電容,同時igbt橋式逆變電路的每個橋臂都接有吸收電容,吸收電容對igbt橋式逆變電路動作時產生的高頻尖峰進行吸收,起到保護igbt的作用,直流母線電容起到直流電壓的支撐及濾波作用,igbt橋式逆變電路將直流電壓波形逆變為高頻spwm電壓波形;直流濾波器濾除直流emc干擾。杭州助力車儲能模組采用足夠多的儲能系統可以保證電力輸出的品質與可靠性。
本實用新型屬于儲能系統領域,特別涉及一種電池組的安全儲能系統。背景技術:目前,電池組一般通過電池儲能箱進行存放和使用,通過電池儲能箱對電池組進行一定的保護作用。但是,當多個電池儲能箱同時在工作狀態時,電池組工作產生大量的熱量,而且由于兩相鄰的電池儲能箱箱體貼合接觸,箱體內的熱量通過箱體向外傳遞并匯集在兩箱體之間,熱量難以充分擴散,造成局部高溫,極易損壞箱體內部的電池組。技術實現要素:發明目的:為了克服現有技術中存在的不足,本實用新型提供一種電池組的安全儲能系統,能夠快速的對熱量進行擴散,保證電池組的安全穩定。技術方案:為實現上述目的,本實用新型的技術方案如下:一種電池組的安全儲能系統,包括基座、封蓋、電池儲能箱和散熱組件,兩組所述電池儲能箱間距設置在基座的上方,且所述封蓋蓋設在兩組所述電池儲能箱的上方,兩組所述電池儲能箱、基座、封蓋之間形成具有兩端開口的散熱通道,在所述封蓋上沿散熱通道的長度方向設置有至少一組散熱組件,且所述散熱組件對應于散熱通道設置。進一步的,所述電池儲能箱為包含內空腔的箱體結構。
包括:主控制器mcu、電池電壓檢測模塊、電池溫度檢測模塊、氣體濃度檢測模塊、滅火裝置、熱管理模塊和通信模塊。其中,mcu與電池電壓檢測模塊、電池溫度檢測模塊、氣體濃度檢測模塊、滅火裝置、熱管理模塊和通信模塊分別相連。氣體濃度檢測模塊包括一個或多個內置于電池箱內的氣體檢測單元,該單元可通過485總線將數據傳輸給安裝于電池箱外的bms控制單元,bms控制單元內部設置主控制器mcu、電池電壓檢測模塊、電池溫度檢測模塊、熱管理模塊和通信模塊。氣體檢測單元與bms控制單元的分開布置有效解決了電池箱內空間有限,不利于安裝控制模塊的缺點,同時485總線通信方式可根據實際需求布置檢測單元數量。每個氣體檢測單元包括多個費加羅氣體檢測傳感器和數據處理子單元,數據處理子單元通過多種檢測氣體傳感器采集氣體濃度數據,并通過485通信總線將數據傳輸給mcu;在一些實施例中,每個氣體檢測單元包括一個co傳感器、一個h2傳感器、一個烷烴類傳感器以及數據處理子單元,數據處理子單元采集氣體濃度信息后通過485通信總線的方式發送給主控mcu。傳感器選擇費加羅電化學氣體傳感器,該類傳感器對氣體的檢測具有很高的靈敏度和良好的穩定性,預熱時間小于30s。兩個儲能電池可配隊組合。
參照圖4所示,將儲能變流器每一相交流濾波器的一端通過并網/離網控制柜連接到n,每一相交流濾波器的另一端通過并網/離網控制柜分別連接到電網a、b、c,即可實現無變壓器隔離的儲能變流器,其它電路連接關系和實施例一中所述的連接關系相同,這里不再重復敘述。將圖4所示的儲能變流器交流濾波器首尾依次連接,即將濾波器連接成三角形連接關系,即可實現三相三線式供電。需要說明的是,并聯的變流器應該采用相同的接線方式,變流器交流側和電網間接入并網/并聯控制柜,并網控制柜采用相同的接線方式。本實施例變流器結構通過簡單的改變單級式儲能變流器的接線方式,即可實現三相四線制到三相三線制供電方式的轉變,同一臺機器可以適用不同的電網供電方式。同時,本實施例變流器結構解決了同一臺儲能變流器對不同電壓等級電池的充放電問題,提高了儲能變流器的應用范圍;將三相支路直流母線電容輸出端的正極和負極分別通過直流接觸器進行連接,通過控制直流接觸器的通斷,實現單級式儲能變流器連接不同電壓等級的電池能夠正常工作,減小為適用不同電池對儲能變流器的投入成本。在另一些實施方式中,電池管理系統(bms)的結構如圖5所示。另一方面把多余的電能送往蓄電池組存儲。杭州助力車儲能模組
內部風道也相應配對連通。杭州助力車儲能模組
(1)電池儲能系統的組成BESS主要由電池系統(BatterySystem,BS)、功率轉換系統(PowerConversionSystem,PCS)、電池管理系統(BatteryManagementSystem,BMS)、監控系統等4部分組成;同時,在實際應用中,為便于設計、管理及控制通常將電池系統、PCS、BMS重新組合成模塊化BESS,而監控系統主要用于監測、管理與控制一個或多個模塊化BESS。圖1-2為BESS的系統結構示意圖。電池儲能系統結構示意圖1)電池系統電池系統是BESS實現電能存儲和釋放主要載體,其容量的大小及運行狀態直接關系著BESS的能量轉換能力及其安全可靠性。通過電池單體的串/并聯可實現電池系統容量的擴大,即大容量電池系統(LargeCapacityBatterySystem,LCBS)。因受電池單體端電壓低、比能量及比功率有限、充放電倍率不高等因素的制約,LCBS一般由成千上萬個電池單體經串并聯后而組成。由電池單體經串/并聯成LCBS的方式較多,在實際開發與應用中一種常用成組方式:先由多個電池單體經串/并聯后形成電池模塊(BatteryModule,BM),再將多個電池模塊串聯成電池串,**后由多個電池串經并聯而成LCBS。圖1-3為一種常用LCBS成組方式示意圖,電池系統由m個電池串并聯而成。杭州助力車儲能模組
浙江瑞田能源有限公司主要經營范圍是能源,擁有一支專業技術團隊和良好的市場口碑。公司業務涵蓋新能源電池,鋰電池,儲能電池,叉車電池等,價格合理,品質有保證。公司注重以質量為中心,以服務為理念,秉持誠信為本的理念,打造能源良好品牌。浙江瑞田能源有限立足于全國市場,依托強大的研發實力,融合前沿的技術理念,飛快響應客戶的變化需求。