成都工具研究所在原有QPQ技術基礎上開發了深層QPQ技術,化合物層深度更大,由原有的15~20μm增加到30~40μm以上。該技術可明顯提高材料的力學性能和抗蝕性。與其他表面處理方法相比,工件具有更高的耐疲勞強度,能夠明顯提高工件的耐磨性能。工件表面硬度得到提升,提高了工件的耐用性和使用壽命,且具有更高的耐腐蝕性。QPQ處理能夠保持尺寸穩定,與其他表面處理方法相比,QPQ處理對零部件尺寸變化的影響較小,有利于保持高精度要求。成都工具研究所有限公司是一家專注于刀具研發和表面處理的公司。深層QPQ源頭廠家
QPQ表面復合處理技術是一種針對金屬表面的處理工藝,能夠有效提高材料表面硬度、耐磨性和抗疲勞性能,并且因工藝、設備簡單易行而被廣泛應用。利用QPQ鹽中的有效組分在合金鋼表面發生分解、吸附、擴散,從而改變合金鋼表面化學成分及相組成以提高合金鋼表面性能。然而,高溫長時間的工藝條件易造成工件變形,組織粗化以及對不銹鋼耐蝕性的降低。因此,工研所研發出了可在低溫進行表面處理的新一代QPQ表面處理技術,化合物滲層由原有的15~20μm增加到30~40μm以上。機械QPQ替代鍍硬鉻成都工具研究所有限公司的QPQ表面處理工藝可以使刀具表面形成一層硬度很高的氮化層。
在工研所QPQ技術的日常生產中,QPQ鹽的質量對工件表面的化合物層特性,包括深度、硬度以及疏松級別,具有至關重要的影響。其中,基鹽中的氰酸根濃度是一個關鍵指標,其精確控制是QPQ技術質量控制流程中的重要環節。為了準確檢測并調整基鹽中的氰酸根含量,經典的甲醛定氮法被廣泛應用。這一方法需要精心配制甲基紅和亞甲基藍的混合指示劑,以確保在加入酸堿時能夠精確控制反應進程。隨后,通過加入過量的甲醛,溶液中的氨態氮會被轉化為氫離子。在酚酞指示劑的作用下,利用氫氧化鈉對轉化后的氫離子進行滴定。通過記錄滴定過程中消耗的氫氧化鈉量,可以精確地推算出基鹽中氰酸根的濃度。這一檢測與調整過程不僅確保了QPQ處理中鹽的質量,也為工件表面形成高質量化合物層提供了有力保障,從而進一步提升了工件的整體性能和使用壽命。
TD金屬表面超硬改性技術俗稱滲金屬,是在800-1050℃的處理溫度下將工件置于硼砂熔鹽及其特種介質中,通過特種熔鹽中的金屬原子和工件中的碳原子產生化學反應,擴散在工件表面形成一層幾微米至二十余微米的金屬碳化物層,目前性能高、應用范圍廣的就是碳化釩(VC)覆層。VC滲層硬度高達2600-3600遠高于QPQ滲層硬度600-1500,所以工研所QPQ的韌性更好。同時工研所QPQ處理溫度(500-600℃)遠低于TD工藝(800-1050℃),且工研所QPQ處理時間短,所以工件變形量工研所QPQ技術優于TD工藝。QPQ表面處理可以提高刀具的抗磨損性能。
相較于原有的QPQ技術,成都工具研究所有限公司研發的新一代的QPQ鹽浴復合處理技術的化合物滲層由原有的15~20μm增加到30~40μm以上,并且成都工具研究所配備有多套QPQ設備、全套先進檢驗設備,如金相顯微鏡、維氏硬度計、鹽霧試驗機、SEM掃描電鏡、X射線衍射儀、拋光設備等,可長期承接外協加工業務。產品經過QPQ技術處理后,具有高硬度、高抗蝕、高耐磨、微變形、環保等優良特性,可替代發黑、磷化、鍍鉻、氣體滲氮、離子滲氮、滲碳等常規工藝。經過QPQ表面處理的刀具具有更好的切削穩定性。機床QPQ淬火
QPQ表面處理可以提高刀具的切削效率,降低加工成本。深層QPQ源頭廠家
工研所的QPQ表面復合處理技術,曾榮獲國家科技進步獎二等獎,以其高耐磨、高耐蝕、微變形的高性能,在金屬表面處理領域獨樹一幟。作為金屬表面強化改性技術的佼佼者,QPQ技術不僅能在材料表面形成一層堅韌的保護層,實現熱處理和表面防腐的雙重功效,還能較之常規方法更為明顯地提升材料的耐磨性和耐蝕性,為金屬制品的性能升級提供了強有力的技術支持。這項技術在國際上已得到廣泛應用,眾多企業如美國通用電氣、德國大眾以及日本的本田、豐田等大公司,均已采納QPQ技術來強化其產品的表面性能。這一技術的普及和應用,不僅彰顯了其在提升產品質量、延長使用壽命方面的優勢,也進一步驗證了工研所在金屬表面處理領域的深厚技術積累和創新能力。深層QPQ源頭廠家