發展背景:數控技術起源于航空工業的需要,20世紀40年代后期,美國一家直升機公司提出了。連續軌跡控制又稱輪廓控制,要求刀具相對于零件按規定軌跡運動。以后又大力發展點位控制數控機床。點位控制是指刀具從某一點向另一點移動,只要然后能準確地到達目標而不管移動路線如何。一般來說數控加工工藝主要包括的內容如下:⑴ 選擇并確定進行數控加工的零件及內容;⑵ 對零件圖紙進行數控加工的工藝分析;⑶數控加工的工藝設計;⑷ 對零件圖紙的數學處理;⑸ 編寫加工程序單;⑹ 按程序單制作控制介質;⑺程序的校驗與修改;⑻ 首件試加工與現場問題處理;⑼數控加工工藝文件的定型與歸檔。在數控加工中,切削液的選擇影響到加工的溫度和刀具壽命。武漢鋁合金數控加工廠家
數控編程:程序結構:程序段是可作為一個單位來處理的連續的字組,它實際是數控加工程序中的一段程序。零件加工程序的主體由若干個程序段組成。多數程序段是用來指令機床完成或執行某一動作。程序段是由尺寸字、非尺寸字和程序段結束指令構成。在書寫和打印時,每個程序段一般占一行,在屏幕顯示程序時也是如此。程序格式:常規加工程序由開始符(單列一段)、程序名(單列一段)、程序主體和程序結束指令(一般單列一段)組成。程序的然后還有一個程序結束符。程序開始符與程序結束符是同一個字符:在ISO代碼中是%,在EIA代碼中是ER。程序結束指令可用M02(程序結來)或M30(紙帶結束)。蘇州非標件數控加工價格數控機床的保養與維護是確保加工穩定性的關鍵環節。
數據和狀態檢查:CNC系統的自診斷不但能在CRT顯示器上顯示故障報警信息,而且能以多頁的“診斷地址”和“診斷數據”的形式提供機床參數和狀態信息,常見的數據和狀態檢查有參數檢查和接口檢查兩種。1)參數檢查數控機床的機床數據是經過一系列試驗和調整而獲得的重要參數,是機床正常運行的保證。這些數據包括增益、加速度、輪廓監控允差、反向間隙補償值和絲杠螺距補償值等。當受到外部干擾時,會使數據丟失或發生混亂,機床不能正常工作。2)接口檢查CNC系統與機床之間的輸入/輸出接口信號包括CNC系統與PLC、PLC與機床之間接口輸入/輸出信號。數控系統的輸入/輸出接口診斷能將所有開關量信號的狀態顯示在CRT顯示器上,用“1”或“0”表示信號的有無,利用狀態顯示可以檢查CNC系統是否已將信號輸出到機床側,機床側的開關量等信號是否已輸入到CNC系統,從而可將故障定位在機床側或是在CNC系統。
先進的伺服驅動技術已普遍應用于數控機床。數字式伺服驅動技術(數字伺服)的使用使得伺服驅動和數控裝置之間的連接更加高效。在大多數情況下,反饋信號與伺服驅動相連,并通過總線傳輸到數控裝置。只在少數采用模擬量控制的伺服驅動(模擬伺服)時,反饋裝置才需要直接與數控裝置連接。輔助控制機構和進給傳動機構在數控機床中也扮演著至關重要的角色。它們接受數控裝置的主軸轉速、轉向和啟停指令,同時處理刀具選擇交換、冷卻潤滑裝置的啟停等輔助指令信號。經過必要的編譯、邏輯判斷和功率放大后,這些機構直接驅動相應的執行元件,從而帶動機床機械部件和液壓氣動等輔助裝置完成預定動作。數控系統通過實時監測振動數據,預防機床因不均衡負荷而導致的故障出現。
機床的受控動作涵蓋了多個方面,包括機床的啟動與停止,主軸的啟停、旋轉方向以及轉速的調整,進給運動的方向、速度和模式的控制,刀具的選擇、長度和半徑的補償,以及刀具的更換和冷卻液的開啟、關閉等操作。數控加工的明顯特點:數控機床在初始階段便專注于加工具有復雜型面的飛機零件,這類零件往往難以通過傳統的加工方法進行制造。其主要優勢在于,通過穿孔帶(或磁帶)的精確控制,機床能夠實現自動化加工,較大程度上提高了加工效率和精度。數控機床在加工過程中能夠自動補償誤差,確保加工精度的穩定性。蘇州鑄鋁件數控加工定制價格
數控加工在高精度零件加工中表現出色,廣泛應用于航天工業。武漢鋁合金數控加工廠家
合理安排“回零”路線。在手工編制復雜輪廓的加工程序時,為簡化計算過程,便于校核,程序編制者有時將每一刀加工完后的刀具終點,通過執行“回零”操作指令,使其全部返回到對刀點位置,然后再執行后續程序。這樣會增加進給路線的距離,降低生產效率。因此,在合理安排“回零”路線時,應使前一刀的終點與后一刀的起點間的距離盡量短.或者為零,以滿足進給路線較短的要求。另外,在選擇返回對刀點指令時,在不發生干涉的前提下,盡可能采用x、z軸雙向同時“回零”指令,該功能“回零”路線是較短的。武漢鋁合金數控加工廠家