客戶可以信賴的超精密K半導體材料和元件的加工品牌,微泰,將客戶滿意度放在中心半導體晶圓真空卡盤、半導體孔卡盤和半導體流量計。專業制造半導體設備的精密組件,包括半導體液位傳感器(ODM/OEM)。處理無氧銅等特殊材料半導體設備,以及精密零件制造。為模件裝配提供解決方案。精密零件加工方面,對于特殊材料,精密加工急件、具有快速服務及應急響應能力。加工半導體晶圓真空卡盤,半導體精密卡盤,半導體精密流量計,半導體液位傳感器,半導體精設備精密元件,JIG制作。模組部件組裝方面,根據客戶要求組裝模組型元件,生產半導體重要零部件,半導體精密流量計。研發中心開發新產品,研發新材料,新的加工技術。超精密加工常見的有CNC車床、研磨加工、放電及線切割加工等,由于大部分都由程式輸入數據后加工。高效超精密氣體流量閥
高精度、高效率高精度與高效率是超精密加工永恒的主題。總的來說,固著磨粒加工不斷追求著游離磨粒的加工精度,而游離磨粒加工不斷追求的是固著磨粒加工的效率。當前超精密加技術如CMP、EEM等雖能獲得極高的表面質量和表面完整性,但以失去加工效率為保證。超精密切削、磨削技術雖然加工效率高,但無法獲得如CMP、EEM的加工精度。探索能兼顧效率與精度的加工方法,成為超精密加工領域研究人員的目標。半固著磨粒加工方法的出現即體現了這一趨勢。另一方面表現為電解磁力研磨、磁流變磨料流加工等復合加工方法的誕生。微加工超精密超精細納米級的超精密加工也稱為納米工藝(nano-technology) 。
微泰利用飛秒激光螺旋鉆孔技術生產各種精密零部件,使用激光進行微孔加工(可加工至Φ0.01mm)·可以改變微孔形狀(圓形、橢圓形、方形)·激光加工不同于一般鉆孔,因此孔位置始終保持不變,因為孔是在熱處理后加工的。納秒紅外激光器環鉆系統–功率:50W,脈沖能量:100uJ,頻率:100Hz飛秒綠光激光器先進的螺旋鉆孔系統–功率:5W,脈沖能量:13uJ,頻率:100Hz·孔徑至少為20μm·能夠加工MAX0.3?孔距·MLCC貼合真空板·能夠處理多達800,000個孔·各種形狀的洞·同一截面的不規則孔·可混合加工不規則尺寸。利用先進的飛秒激光螺旋鉆孔系統和獨有ELID(電解在線砂輪修正技術),飛秒激光拋光技術,生產各種超精密零部件。用于半導體加工真空板薄膜真空板倒裝芯片工藝真空塊MLCC貼合用真空板薄膜芯片粘接工具,鏡頭模組組裝治具。用自主自主技術,飛秒激光螺旋鉆孔系統,加工出來的微孔不同于連續波激光,納秒激光,皮秒激光加工出來的微孔,平整,熱變形和物理變形很小,可以做到,1.孔徑至少為20微米;2.能夠加工MAX0.3微米孔距;3.MLCC貼合真空板4.在一塊真空板上,能夠處理多達八十萬個孔;5.各種形狀的孔;6.同一截面的不規則孔;7.可混合加工不規則尺寸的孔
微泰利用自主技術,飛秒激光螺旋鉆孔系統和獨有ELID(電解在線砂輪修正技術),飛秒激光拋光技術,飛秒激光切割技術,生產各種超精密零部件。測包機分度盤(INDEXTABLE)在MLCC編帶工藝中使用的測包機分度盤生產取得了成功。測包機分度盤在通過拋光加工形成袋子時限制了袋子尺寸。經過多年的發展,微泰發展出一種沒有口袋大小限制的生產方式,可以生產比目前的0201更小的分度盤。微泰MLCC測包機分度盤為客戶提供了高質量的高穩定性和超精密分度盤。適合多種規格尺寸的MLCC分度盤,0201型/0402型/0603型/1005型/1608型分度盤(黑氧化鋯),尺寸小于0201的分度盤(黑氧化鋯),環氧玻璃分度盤。微泰分度盤特點:1,保證口袋均勻性、高精度,沒有口袋形狀的限制。2,MLCC在所有口袋中都具有同等性能·采用黑色氧化鋯(密度6.05g/cm2)壽命長(抗蛀牙)。3,與競爭對手相比,交貨速度快/價格低/質量好。5,使用微泰分度盤測包機速度可提升一倍。激光超精密打孔是將光斑直徑縮小到微米級,從而獲得高的激光功率密度,幾乎可以在任何材料實行激光打孔。
超精密加工技術在制造業中的應用,主要包括以下幾個方面:1.光學元件加工:如鏡頭、反射鏡等,要求表面粗糙度極低,形狀精度高。2.電子器件加工:如硬盤驅動器的磁頭、微型傳感器等,對尺寸和形狀精度有極高要求。3.生物醫療領域:如微型醫療器械、人工關節等,需要高精度加工以滿足嚴格的生物兼容性要求。4.航空航天領域:如衛星部件、發動機葉片等,需要承受極端環境,對材料加工精度有嚴格要求。5.新材料研發:如超導材料、納米材料等,加工過程中需保持材料的特殊性能。超精密加工技術對設備、材料和工藝都有極高的要求,是推動行業發展的關鍵技術之一。不受加工數量的限制,對于小批量加工服務,激光超精密加工更加便宜。飛秒激光超精密拋光
超精密加工中的微細加工技術是指制造微小尺寸零件的加工技術。高效超精密氣體流量閥
通常,按加工精度劃分,機械加工可分為一般加工、精密加工、超精密加工三個階段。目前,精密加工是指加工精度為10~0.1μm,表面粗糙度為Ra0.1~0.01μm,公差等級在IT5以上的加工技術。但一般加工、精密加工和超精密加工只是一個相對概念,其間的界限將隨著加工技術的進步不斷變化,現在的精密加工可能就是明天的一般加工。凸起字樣被緩慢地往下壓進底部,變成平滑表面看似現代科技的超精密加工,其實在上個世紀早已出現超精密加工的發展經歷了如下三個階段:(1)20世紀50年代至80年代為技術開創期出于航天、大規模集成電路、激光等技術發展的需要,美國率先發展了超精密加工技術,開發了金剛石刀具超精密切削——單點金剛石切削(Singlepointdiamondturning,SPDT)技術,又稱為“微英寸技術”,用于加工激光核聚變反射鏡、戰術導彈及載人飛船用球面、非球面大型零件等。(2)20世紀80年代至90年代為民間工業應用初期在相關機構的支持下,美國的摩爾公司、普瑞泰克公司開始超精密加工設備的商品化,而日本的東芝和日立以及歐洲Cranfield大學等也陸續推出產品,并開始用于民間工業光學組件的制造。但當時的超精密加工設備依然高貴而稀少,主要以特殊機的形式訂作。高效超精密氣體流量閥