高鹽循環水易導致設備腐蝕和結垢,電化學離子交換(EDI)技術結合離子交換樹脂與直流電場,可連續脫除Ca2?、Mg2?和Cl?等離子。以填充混床樹脂的電滲析模塊為例,在15 V電壓下,硬度離子去除率>90%,產水電阻率可達5 MΩ·cm。相比傳統離子交換,EDI無需酸堿再生,且自動化程度高。設計要點包括:①樹脂選擇(強酸/強堿型);②隔板流道優化(防堵塞);③極水循環(防結垢)。某電子廠超純水系統中,EDI使再生廢水排放量減少95%,運行成本降低30%。電化學方法使碳鋼腐蝕速率降至0.02mm/a。湖北海水淡化電極除硬
臭氧氧化可高效降解循環水中的難降解有機物,電化學臭氧發生器(EOG)通過質子交換膜電解水產生高濃度臭氧(50-200 g O?/kWh)。以PbO?陽極為例,臭氧產率比傳統電暈法高30%,且無需空氣預處理。某印染廠將EOG集成至循環水系統,色度去除率>95%,并減少了污泥產量。
循環水中的Cu、Zn等重金屬可通過電化學沉積在陰極回收。采用旋轉陰極(轉速50 rpm)和脈沖電流(占空比20%)時,銅回收純度達99.5%,電流效率>80%。某電鍍廠循環水處理案例顯示,年回收銅2.5噸,經濟效益與環境效益明顯。 電極設備電化學-生物耦合工藝COD負荷提升至3kg/(m3·d)。
垃圾滲濾液成分復雜(含腐殖酸、氨氮、重金屬等),電氧化可同步實現有機物降解和脫氮。以Ti/RuO?-IrO?陽極為例,在Cl?存在下,氨氮通過間接氧化轉化為N?(選擇性>70%),同時COD去除率達60-80%。關鍵問題在于滲濾液的高鹽分(如Na?、K?)可能導致電極腐蝕,需采用耐鹽涂層(如Ti/Pt)或預處理脫鹽。此外,耦合生物處理(如前置厭氧消化)可降低電耗,而脈沖電源模式能減少電極鈍化。中試研究表明,處理成本約為8-12元/噸,具備規模化應用潛力。
鈦電極突出的特性之一便是明顯的耐腐蝕性。鈦在空氣中極易與氧結合,形成一層致密且穩定的氧化膜,這層氧化膜能有效阻止鈦基體進一步被腐蝕。在多種強腐蝕性介質中,如鹽酸、硫酸、硝酸等,普通金屬電極可能迅速被腐蝕破壞,而鈦電極憑借其表面的氧化膜,能夠長時間穩定工作。即使在高濃度、高溫的腐蝕性溶液中,鈦電極依然能保持良好的物理和化學性能。例如,在濕法冶金領域,鈦電極可用于處理含大量酸、堿和重金屬離子的溶液,其耐腐蝕性使得電極壽命大幅延長,減少了設備維護和更換成本,提高了生產效率。電化學方法使色度從500倍降至10倍以下。
電解槽中的電極同樣至關重要,它是電流進入或離開電解液的導體,電解過程就在電極相界面上發生氧化還原反應。電極分為陰極和陽極,與電源正極相連的是陽極,陽極上發生氧化反應;與電源負極相連的是陰極,陰極上發生還原反應。電解材料種類繁多,碳電極是常用材料之一,因其具有良好的導電性和化學穩定性,在許多電解過程中表現出色。此外,鈦等金屬也可作為電極材料,尤其在一些對電極耐腐蝕性要求較高的特殊電解應用中。在電鍍工藝里,含有鍍層金屬的金屬常作為陽極,待鍍制品則作為陰極。電化學處理循環水滿足地表水Ⅲ類標準。吉林循壞水電極
電化學處理使軍團菌檢出率降為零。湖北海水淡化電極除硬
工作電極主要用于研究電化學反應的實驗,研究人員期望在該電極上發生所關注的特定電化學反應。對于工作電極,有諸多要求。它可以是固體,也可以是液體,各類能導電的固體材料基本都能作為工作電極。同時,所研究的電化學反應不能受電極自身其他反應的干擾,并且要能在較寬的電位區域內進行測定,還必須保證電極不與溶劑或電解液組分發生反應。常見的 “惰性” 固體電極材料如玻碳、鉑、金等常被選用,以滿足實驗需求。
醫用電極在醫療領域發揮著重要作用,以心電圖機為例,電極需要被準確放置在患者皮膚上,用于檢測心臟的電活動。心臟在跳動過程中會產生微弱的電信號,這些信號通過皮膚傳導到電極上,電極將其收集并傳輸到心電圖機中,經過處理后形成心電圖,醫生依據心電圖的波形特征,能夠判斷患者心臟的健康狀況,檢測是否存在心律失常、心肌缺血等心臟疾病,為臨床診斷提供關鍵依據,在心血管疾病的診斷中具有不可替代的地位。 湖北海水淡化電極除硬