3.2.1感知層的傳感器GZAFV-01系統的感知層如上圖3.1所示,由IED/主機、6路聲紋振動傳感器、1路電流傳感器等構成,聲紋振動傳感器集成電荷放大器,將聲紋振動信號轉換成與之成正比的電壓信號;電流傳感器采用微型卡扣結構,便于現場安裝。各傳感器外觀及參數如下表1所示。◆3路聲紋振動傳感器采集取OLTC振動信號,通過固定底座安裝在變壓器外壁,安裝位置選取平行于OLTC的垂直傳動桿方向,且盡量靠近OLTC的觸頭組處。◆1路電流傳感器采集OLTC驅動電機電流信號,安裝于OLTC驅動電機電源線處。◆3路聲紋振動傳感器采集變壓器繞組及鐵芯聲紋振動信號,安裝位置選取于上夾件底部、非冷卻器側油箱表面中部、油箱頂部中心點。為保持監測點的同一性,便于后期監測數據的時間軸線比對,所有聲紋振動傳感器底座長期固定在變壓器外壁上。安裝示意圖如下圖3所示。(備注:傳感器安裝的數量及位置可根據被測設備的監測需求而靈活調整)監測系統對設備振動加速度的測量范圍是多少?本地在線監測監測頻率
5.2.1功能描述電能質量不僅關系到電網企業的安全經濟運行,也影響到用戶的安全運行和產品質量。理想的電力系統向用戶提供的應該是一個恒定工頻的正弦信號,而隨著電力電子技術的發展,大功率可控硅器件、開關電源、變頻調速得到廣泛應用,這些典型非線性負荷將從電網吸入或注入諧波電流,從而引起電網電壓畸變,使電網波形受到污染,供電質量惡化,附加損失增加,傳輸能力下降,成為影響電能質量的重要因素。電流實時在線監測可動態關注開關柜運行電流,并提供開關柜運行狀態信息及負荷情況。5.2.2配置原則單臺開關柜配置1套電流監測子系統,從開關柜儀表處獲取電流信號。GIS在線監測使用說明書振動聲學指紋在線監測技術的頻率響應范圍是多少?
合理安排檢修周期是狀態檢修模式下的重要任務。通過對 GIS 設備機械性故障的監測,能夠準確評估設備的運行狀態,為合理制定檢修周期提供依據。對于監測數據顯示運行狀態良好的設備,可以適當延長檢修周期,減少不必要的檢修工作,降低運維成本。而對于存在機械性故障隱患的設備,則縮短檢修周期,加強監測和維護,確保設備的安全運行。例如,根據監測系統對某區域內多臺 GIS 設備的評估結果,對不同設備制定了差異化的檢修周期,既保證了設備的可靠性,又提高了運維效率。
智能算法在 GIS 設備機械性故障監測中也具有廣闊的應用前景。利用機器學習算法,如支持向量機、人工神經網絡等,對大量的振動和聲學監測數據進行學習和訓練。通過建立故障診斷模型,使算法能夠自動識別設備的正常運行狀態和各種機械性故障狀態。例如,將歷史監測數據中的正常狀態數據和已知的機械性故障狀態數據作為訓練樣本,訓練人工神經網絡模型。經過訓練的模型可以對實時監測數據進行快速分析,準確判斷設備是否存在機械性故障,并預測故障的發展趨勢,為設備的維護和檢修提供科學依據。杭州國洲電力科技有限公司振動聲學指紋在線監測系統的數據處理能力。
杭州國洲電力科技有限公司成立于2013年5月,是專注于綜合智慧能源服務領域內發、輸、變、配、用、儲等全過程的各電力設備參量監測、數據分析和狀態評價技術的研、產、銷、服四位一體的****,致力于為領域內各科研院所、專業院校、設備管理、工程服務、發電、設備制造等合作方提供質量的體系化技術方案。
我公司于2014年1月把研發部、生產部和技術服務部融合打造成“技術智造中心”,并在中心組建了專注于局部放電監測技術和聲紋振動監測技術的兩大課題組,成功研制出自主知識產權的、先進的局部放電和聲紋振動監測技術,在投運站場、制造廠區的電力設備上10來年大量的持續運用,為電網的可靠運行提供了逐年增長的技術支持,特別是在變壓器、開關設備和輸電設備等的絕緣、機械性能的分析與診斷方面,憑借我公司前沿的軟硬件技術與先進的監測方法,為電力設備的運維管理提供了質量的技術方案。 杭州國洲電力科技有限公司局部放電在線監測技術遵循的國際標準。名優在線監測監測布置
杭州國洲電力科技有限公司在線監測技術的未來發展方向。本地在線監測監測頻率
變壓器運行時,電流通過繞組時產生的電動力引起繞組振動,硅鋼片的磁致伸縮及硅鋼片接縫處與疊片之間的漏磁導致鐵芯振動。由于繞組導體所受電動力正比于負載電流的平方,繞組的聲紋振動信號的基頻為100Hz。由于變壓器中磁感應強度正比于加載電壓的平方,鐵芯的聲紋振動信號的基頻也為100Hz。另外,考慮到鐵芯振動的非線性特性,聲紋振動信號還會包含頻率為100Hz整數倍的高次諧波。當變壓器的繞組變形或鐵芯故障后,聲紋振動信號頻譜分布將發生改變,產生諧波分量。因此,信號分量可以作為區別繞組故障與鐵芯故障的重要依據,采用聲紋振動監測法可實現繞組及鐵芯在線運行狀態下的健康態勢評價與故障類型診斷。本地在線監測監測頻率