除了熱輻射,電子設備在出現故障或異常時,還可能伴隨微弱的光發射增強。熱紅外顯微鏡搭載高靈敏度的光學探測器,如光電倍增管(PMT)或電荷耦合器件(CCD),能夠有效捕捉這些低強度的光信號。這類光發射通常源自電子在半導體材料中發生的能級躍遷、載流子復合或其他物理過程。通過對光發射信號的成像和分析,熱紅外顯微鏡不僅能夠進一步驗證熱點區域的存在,還可輔助判斷異常的具體機制,為故障定位和性能評估提供更精確的信息。熱紅外顯微鏡可用于研究電子元件在不同環境下的熱行為 。檢測用熱紅外顯微鏡設備廠家
致晟光電自主研發的熱紅外顯微鏡 Thermal EMMI P系列,是電子工業中不可或缺的精密檢測工具,在半導體芯片、先進封裝技術、功率電子器件以及印刷電路板(PCB)等領域的失效分析中發揮著舉足輕重的作用。
該設備搭載——實時瞬態鎖相紅外熱分析(RTTLIT)系統,并集成高靈敏度紅外相機、多倍率可選顯微鏡鏡頭、精確高低壓源表等技術組件,賦予其三大特性:超凡靈敏度與亞微米級檢測精度,可捕捉微弱熱信號與光子發射;高精度溫度測量能力(鎖相靈敏度達0.001℃),支持動態功耗分析;無損故障定位特性,無需破壞器件即可鎖定短路、開路等缺陷。憑借技術集成優勢,ThermaEMMIP系列不僅能快速定位故障點,更能通過失效分析優化產品質量與可靠性,為半導體制造、先進封裝及電子器件研發提供關鍵技術支撐。 工業檢測熱紅外顯微鏡設備制造熱紅外顯微鏡在電子產品研發階段,輔助優化熱管理方案 。
在電子領域,所有器件都會在不同程度上產生熱量。器件散發一定熱量屬于正常現象,但某些類型的缺陷會增加功耗,進而導致發熱量上升。
在失效分析中,這種額外的熱量能夠為定位缺陷本身提供有用線索。熱紅外顯微鏡可以借助內置攝像系統來測量可見光或近紅外光的實用技術。該相機對波長在3至10微米范圍內的光子十分敏感,而這些波長與熱量相對應,因此相機獲取的圖像可轉化為被測器件的熱分布圖。通常,會先對斷電狀態下的樣品器件進行熱成像,以此建立基準線;隨后通電再次成像。得到的圖像直觀呈現了器件的功耗情況,可用于隔離失效問題。許多不同的缺陷在通電時會因消耗額外電流而產生過多熱量。例如短路、性能不良的晶體管、損壞的靜電放電保護二極管等,通過熱紅外顯微鏡觀察時會顯現出來,從而使我們能夠精細定位存在缺陷的損壞部位。
在失效分析的有損分析中,打開封裝是常見操作,通常有三種方法。全剝離法會將集成電路完全損壞,留下完整的芯片內部電路。但這種方法會破壞內部電路和引線,導致無法進行電動態分析,適用于需觀察內部電路靜態結構的場景。局部去除法通過特定手段去除部分封裝,優點是開封過程不會損壞內部電路和引線,開封后仍可進行電動態分析,能為失效分析提供更豐富的動態數據。自動法則是利用硫酸噴射實現局部去除,自動化操作可提高效率和精度,不過同樣屬于破壞性處理,會對樣品造成一定程度的損傷。
熱紅外顯微鏡可對不同材質的電子元件進行熱特性對比分析 。
近年來,非制冷熱紅外顯微鏡價格呈下行趨勢。在技術進步層面,國內紅外焦平面陣列芯片技術不斷突破,像元間距縮小、陣列規模擴大,從早期的 17μm、384×288 發展到如今主流的 12μm 像元,1280 ×1 024、1920 × 1080 陣列規模實現量產,如大立科技等企業推動技術升級,提升生產效率,降低單臺設備成本。同時,國產化進程加速,多家本土廠商崛起,如我司推出非制冷型鎖相紅外顯微鏡,打破進口壟斷格局,市場競爭加劇,促使產品價格更加親民。監測微流控芯片、生物傳感器的局部熱反應,研究生物分子相互作用的熱效應。鎖相熱紅外顯微鏡廠家
芯片復雜度提升對缺陷定位技術的精度與靈敏度提出更高要求。檢測用熱紅外顯微鏡設備廠家
熱紅外顯微鏡是半導體失效分析與缺陷定位的三大主流手段之一(EMMI、THERMAL、OBIRCH),通過捕捉故障點產生的異常熱輻射,實現精細定位。存在缺陷或性能退化的器件通常表現為局部功耗異常,導致微區溫度升高。顯微熱分布測試系統結合熱點鎖定技術,能夠高效識別這些區域。熱點鎖定是一種動態紅外熱成像方法,通過調節電壓提升分辨率與靈敏度,并借助算法優化信噪比。在集成電路(IC)分析中,該技術廣泛應用于定位短路、ESD損傷、缺陷晶體管、二極管失效及閂鎖問題等關鍵故障。 檢測用熱紅外顯微鏡設備廠家