從傳統熱發射顯微鏡到熱紅外顯微鏡的演變,是其技術團隊對微觀熱分析需求的深度洞察與持續創新的結果。它既延續了通過紅外熱輻射解析熱行為的原理,又通過全尺度觀測、高靈敏度檢測、場景化分析等創新,突破了傳統技術的邊界。如今,這款設備已成為半導體失效分析、新材料熱特性研究、精密器件研發等領域的專業工具,為行業在微觀熱管控、缺陷排查、性能優化等方面提供了更高效的技術支撐,推動微觀熱分析從 “可見” 向 “可知”“可控” 邁進。評估 PCB 走線布局、過孔設計對熱分布的影響,指導散熱片、導熱膠的選型與 placement。紅外光譜熱紅外顯微鏡訂制價格
致晟光電熱紅外顯微鏡(Thermal EMMI)系列中的 RTTLIT P20 實時瞬態鎖相熱分析系統,采用鎖相熱成像(Lock-inThermography)技術,通過調制電信號提升特征分辨率與靈敏度,并結合軟件算法優化信噪比,實現顯微成像下超高靈敏度的熱信號測量。RTTLIT P20搭載100Hz高頻深制冷型超高靈敏度顯微熱紅外成像探測器,測溫靈敏度達0.1mK,顯微分辨率低至2μm,具備良好的檢測靈敏度與測試效能。該系統重點應用于對測溫精度和顯微分辨率要求嚴苛的場景,包括半導體器件、晶圓、集成電路、IGBT、功率模塊、第三代半導體、LED及microLED等的失效分析,是電子集成電路與半導體器件失效分析及缺陷定位領域的關鍵工具。福建熱紅外顯微鏡國產熱紅外顯微鏡憑借自主研發軟件,具備時域重構等功能,提升檢測效率。
RTTLITP20 熱紅外顯微鏡憑借多元光學物鏡配置,構建從宏觀到納米級的全尺度熱分析能力,靈活適配多樣檢測需求。Micro廣角鏡頭可快速覆蓋大尺寸樣品整體熱分布,如整塊電路板、大型模組的散熱趨勢,高效完成初步篩查;0.13~0.3x變焦鏡頭通過連續倍率調節,適配芯片封裝體、傳感器陣列等中等尺度器件熱分析,兼顧整體熱場與局部細節;0.65X~0.75X變焦鏡頭提升分辨率,解析芯片內部功能單元熱交互,助力定位封裝散熱瓶頸;3x~4x變焦鏡頭深入微米級結構,呈現晶體管陣列、引線鍵合點等細微部位熱分布;8X~13X變焦鏡頭聚焦納米尺度,捕捉微小短路點、漏電流區域等納米級熱點的微弱熱信號,滿足先進制程半導體高精度分析需求。
多段變焦與固定倍率結合的設計,實現宏觀到微觀熱分析平滑切換,無需頻繁更換配件,大幅提升半導體失效分析、新材料熱特性研究等領域的檢測效率與精細度。
在產品全壽命周期中,失效分析以解決失效問題、確定根本原因為目標。通過對失效模式開展綜合性試驗分析,它能定位失效部位,厘清失效機理 —— 無論是材料劣化、結構缺陷還是工藝瑕疵引發的問題,都能被系統拆解。在此基礎上,進一步提出針對性糾正措施,從源頭阻斷失效的重復發生。
作為貫穿產品質量控制全流程的關鍵環節,失效分析的價值體現在對全鏈條潛在風險的追溯與排查:在設計(含選型)階段,可通過模擬失效驗證方案合理性;制造環節,能鎖定工藝偏差導致的批量隱患;使用過程中,可解析環境因素對性能衰減的影響;質量管理層面,則為標準優化提供數據支撐。 熱紅外顯微鏡可實時監測電子設備運行中的熱變化,預防過熱故障 。
在電子領域,所有器件都會在不同程度上產生熱量。器件散發一定熱量屬于正常現象,但某些類型的缺陷會增加功耗,進而導致發熱量上升。
在失效分析中,這種額外的熱量能夠為定位缺陷本身提供有用線索。熱紅外顯微鏡可以借助內置攝像系統來測量可見光或近紅外光的實用技術。該相機對波長在3至10微米范圍內的光子十分敏感,而這些波長與熱量相對應,因此相機獲取的圖像可轉化為被測器件的熱分布圖。通常,會先對斷電狀態下的樣品器件進行熱成像,以此建立基準線;隨后通電再次成像。得到的圖像直觀呈現了器件的功耗情況,可用于隔離失效問題。許多不同的缺陷在通電時會因消耗額外電流而產生過多熱量。例如短路、性能不良的晶體管、損壞的靜電放電保護二極管等,通過熱紅外顯微鏡觀察時會顯現出來,從而使我們能夠精細定位存在缺陷的損壞部位。 熱紅外顯微鏡憑借高靈敏度探測器,實現芯片微米級紅外熱分布觀察,鎖定異常熱點 。高分辨率熱紅外顯微鏡用戶體驗
熱紅外顯微鏡通過 AI 輔助分析,一鍵生成熱譜圖,大幅提升科研與檢測效率。紅外光譜熱紅外顯微鏡訂制價格
非破壞性分析(NDA)以非侵入方式分析樣品內部結構和性能,無需切割、拆解或化學處理,能保留樣品完整性,為后續研究留有余地,在高精度、高成本的半導體領域作用突出。
無損分析,通過捕捉樣品自身紅外熱輻射成像,全程無接觸,無需對晶圓、芯片等進行破壞性處理。在半導體制造中,可識別晶圓晶體缺陷;封裝階段,能檢測焊接點完整性或封裝層粘結質量;失效分析時,可定位內部短路或斷裂區域的隱性熱信號,為根源分析提供依據,完美適配半導體行業對高價值樣品的保護需求。 紅外光譜熱紅外顯微鏡訂制價格