近年來,微化工技術(shù)已成為化學(xué)工程學(xué)科中一個新的發(fā)展方向和研究熱點。微化工設(shè)備的主要組成部分是特征尺度為納米到微米級的微通道,因此,微通道內(nèi)的流體流動和傳遞行為就成為微化工系統(tǒng)設(shè)計和實際應(yīng)用的基礎(chǔ),對其進行系統(tǒng)深入的研究具有重要意義。20世紀(jì)90年代初,可持續(xù)與高新技術(shù)發(fā)展的需要促進了微化工技術(shù)的研究,“創(chuàng)闊科技”其主要研究對象為特征尺度在微米級的微通道,由于尺度的微細化使得微通道中化工流體的傳熱、傳質(zhì)性能與常規(guī)系統(tǒng)相比有較大程度的提高,即系統(tǒng)微型化可實現(xiàn)化工過程強化這一目標(biāo)。自微通道反應(yīng)器面世以來,微通道反應(yīng)技術(shù)的概念就迅速引起相關(guān)領(lǐng)域**的濃厚興趣和關(guān)注,歐美、日本、韓國和中國等都非常重視這一技術(shù)的研究與開發(fā)。由于特征尺度的微型化,微化工技術(shù)的發(fā)展在技術(shù)領(lǐng)域中構(gòu)成了重大挑戰(zhàn),也為科學(xué)領(lǐng)域帶來許多全新的問題,在微尺度的化工系統(tǒng)中,傳統(tǒng)的“三傳一反”理論需要修正、補充和創(chuàng)新,系統(tǒng)的表面和界面性質(zhì)將會起重要作用,從宏觀向微觀世界過渡時存在的許多科學(xué)問題有待于發(fā)現(xiàn)、探索和開拓。特征尺度為微米和納米級的微通道是微化工設(shè)備系統(tǒng)的主要組成部分,微通道內(nèi)的單相、氣液和液液兩相流是微流體學(xué)的主要研究內(nèi)容。高效微通道反應(yīng)器加工聯(lián)系創(chuàng)闊金屬科技。泰州創(chuàng)闊能源微通道換熱器
創(chuàng)闊能源科技微通道加工材質(zhì)的選擇在低介質(zhì)流量時,熱阻控制區(qū)為低熱導(dǎo)率區(qū)。因此低熱導(dǎo)率材料換熱器(如玻璃)的換熱效率要明顯高于諸如金屬等具高熱導(dǎo)率的換熱器。在高介質(zhì)流量時,對于結(jié)構(gòu)參數(shù)一定的換熱器,隨操作流量的增加,導(dǎo)熱熱阻對換熱效率的影響逐漸增強,高效換熱區(qū)也向高熱導(dǎo)率方向移動,換熱器材料可用熱導(dǎo)率相對較低的金屬材料(如不銹鋼)。Bier等對錯流式微通道換熱器內(nèi)氣-氣換熱特性進行了數(shù)值分析和實驗研究,結(jié)果表明,不銹鋼微通道換熱器的換熱效率高于銅微換熱器。廣東PCHE應(yīng)用微通道換熱器高效液冷板設(shè)計加工創(chuàng)闊科技。
節(jié)能是當(dāng)今空調(diào)器的一項重要指標(biāo)。常規(guī)換熱器很難制造出高等級如Ⅰ級能效標(biāo)準(zhǔn)的產(chǎn)品,微通道換熱器將是解決該問題的很好選擇。②換熱性能突出。在家用空調(diào)方面,當(dāng)流道尺寸小于3mm時,氣液兩相流動與相變傳熱規(guī)律將不同于常規(guī)較大尺寸,通道越小,這種尺寸效應(yīng)越明顯。當(dāng)管內(nèi)徑小到。將這種強化傳熱技術(shù)用于空調(diào)換熱器,適當(dāng)改變換熱器結(jié)構(gòu)、工藝及空氣側(cè)的強化傳熱措施,預(yù)計可有效增強空調(diào)換熱器的傳熱、提高其節(jié)能水平。③推廣潛力。微通道換熱器技術(shù)在空調(diào)制造領(lǐng)域還有向空氣能熱水器推廣的潛力,可以極大提升產(chǎn)品的競爭力和企業(yè)的可持續(xù)發(fā)展能力。與常規(guī)換熱器相比,微通道換熱器不僅體積小換熱系數(shù)大,換熱效率高,可滿足更高的能效標(biāo)準(zhǔn),而且具有優(yōu)良的耐壓性能,可以CO2為工質(zhì)制冷,符合環(huán)保要求,已引起國內(nèi)外學(xué)術(shù)界和工業(yè)界的很好關(guān)注。微通道換熱器的關(guān)鍵技術(shù)—微通道平行流管的生產(chǎn)方法在國內(nèi)已漸趨成熟,使得微通道換熱器的規(guī)模化使用成為可能。
創(chuàng)闊科技制作的微通道換熱器,采用真空擴散焊接方式,這種焊接優(yōu)點是沒有焊料,焊縫為母材本體,強度與母材相當(dāng),耐高溫、耐腐蝕取消了焊料厚度對產(chǎn)品尺寸的影響,相同尺寸下道層數(shù)更多,換熱性能更好:避免了焊接過程中焊料流動造成的流道堵塞和產(chǎn)生焊渣等多余物;變形量小,流道尺寸更接近理論尺寸,焊后外形較為美觀:焊縫熔點與母材相同,后期總裝。二次氫弧焊封頭、法蘭、支架等零件時對芯體焊縫影響較小。產(chǎn)品不易泄漏,可靠性較高。緊湊型微結(jié)構(gòu)換熱器創(chuàng)闊科技。
微結(jié)構(gòu)反應(yīng)器(簡稱微反應(yīng)器)是重要的微化工設(shè)備之一,是實現(xiàn)化工過程微小型化的裝備。在微化工過程中微反應(yīng)器擔(dān)負起了完成反應(yīng)過程、提高反應(yīng)收率、控制產(chǎn)物形貌以及提升過程安分離回收難度和成本、減少過程污染等具有重要的意義。針對不同過程特點開發(fā)出的微反應(yīng)器不僅形式多樣,其配套的工藝技術(shù)也與傳統(tǒng)化工過程存在一定區(qū)別,利用集成化的微反應(yīng)系統(tǒng)可以實現(xiàn)過程的耦合,因此微反應(yīng)技術(shù)的發(fā)展也同時帶動了化工工藝的進步。微反應(yīng)器起源于20世紀(jì)90年代,21世紀(jì)初葉是微尺度反應(yīng)技術(shù)的快速發(fā)展期。創(chuàng)闊科技也在基礎(chǔ)研究方面,隨著對微尺度多相流動、分散、聚并研究的不斷深入,微反應(yīng)器內(nèi)多相流型,分散尺度調(diào)控機制以及微分散體系的大批量制備規(guī)律等問題逐漸被人們深入理解。基于微反應(yīng)器內(nèi)微小的流體分散尺度、極大的相間接觸面積等特點可以有效強化相間傳質(zhì)和混合過程,從而為反應(yīng)過程的強化奠定基礎(chǔ)。研究結(jié)果表明,利用微反應(yīng)器能夠有效強化受傳遞或混合控制的化學(xué)反應(yīng)過程,而這類過程在傳統(tǒng)的反應(yīng)裝置內(nèi)往往難以精確控制,極易產(chǎn)生局部熱點、濃度分布不均、短路流和流動死區(qū)等問題,微反應(yīng)器具有的高效混合和快速傳遞性能是解決這些問題的重要手段。微通道通過各向異性的蝕刻過程可完成加工新型換熱器,創(chuàng)闊科技。蘇州創(chuàng)闊金屬微通道換熱器
微通道換熱器部件加工創(chuàng)闊科技。泰州創(chuàng)闊能源微通道換熱器
微通道換熱器早應(yīng)用于電子領(lǐng)域,解決了集成電路中大規(guī)模的“熱障”問題,目前在制冷行業(yè)得到應(yīng)用。微通道換熱器相比常規(guī)換熱器的優(yōu)勢有:1)換熱效率高;2)熱響應(yīng)速率高,可控性好;3)噪聲小,運行穩(wěn)定;4)承壓能力好;5)抗腐蝕;6)節(jié)約成本,相同換熱要求下材料消耗小。目前對于微通道換熱器空氣側(cè)流動及換熱性能的研究,主要是考慮空氣流速對換熱性能的影響,或者考慮翅片的間距和結(jié)構(gòu)尺寸對于換熱性能的影響,沒有從翅片開窗角度和翅片開窗數(shù)2個方面結(jié)合研究翅片對于微通道換熱器換熱性能的影響。創(chuàng)闊能源科技團隊研究計算流體力學(xué)方法對不同開窗角度和開窗數(shù)目的微通道換熱器空氣側(cè)流動及換熱進行分析,對比翅片結(jié)構(gòu)參數(shù)對換熱和流動阻力的影響,尋找較優(yōu)的翅片結(jié)構(gòu)。泰州創(chuàng)闊能源微通道換熱器