雙光子之源:飛秒激光:雙光子吸收理論早在1931年就由諾獎得主MariaGoeppertMayer提出,30年后因為有了激光才得到實驗驗證,但是到WinfriedDenk發明雙光子顯微鏡又用了將近30年。要理解雙光子的技術挑戰和飛秒激光發揮的重要作用,首先要了解其中的非線性過程。雙光子吸收相當于和頻產生非線性過程,這要求極高的電場強度,而電場取決于聚焦光斑大小和激光脈寬。聚焦光斑越小,脈寬越窄,雙光子吸收效率越高。對于衍射極限顯微鏡,聚焦在樣品上的光斑大小只和物鏡NA和激光波長有關,所以關鍵變量只剩下激光脈寬。基于以上分析,能夠以高重頻(100MHz)輸出超短脈沖(100fs量級)的飛秒激光器成了雙光子顯微鏡的標準激發光源。這也再次說明雙光子顯微鏡的優勢:只有焦平面處才能形成雙光子吸收,而焦平面之外由于光強低無法被激發,所以雙光子成像更清晰。WinfriedDenk初使用的光源是染料飛秒激光器(100fs脈寬、630nm可見光波長)。雖然染料激光器對于實驗室演示尚可,但是使用很不方便所以遠未實現商用。很快雙光子顯微鏡的標配光源就變成了飛秒鈦寶石激光器。除了固態光源優勢,鈦寶石激光器還具有較寬的近紅外波長調諧范圍,而近紅外相比可見光穿透更深,對生物樣品損傷更小。由于其非侵入性和高分辨率的特點,雙光子顯微鏡成為了研究神經科學、ai癥研究、免疫學等領域的重要工具。美國2PPLUS雙光子顯微鏡作用
通過并行化不同激光波長的激光掃描,研究人員增加了在相同時間內可以成像的體積,同時保持了高的時間和空間分辨率。研究人員通過引入兩種不同波長的鈣信號熒光探針,將神經元群體的活動標記為兩種不同的顏色,同時激發兩種不同波長的探針,從而實現了兩種顏色的并行數據記錄。為了實現三維空間成像,研究人員還在兩個激光束上配置了快速變焦系統,即一個電透鏡和一個空間光調制器。因此,可以以10Hz的速度同時記錄10個500微米和500微米的平面,覆蓋600微米的深度,覆蓋大腦皮層第二層到第五層的結構,體積內可以記錄2000多個神經元。ultima雙光子顯微鏡雙光子顯微鏡使用長波長脈沖光,是通過物鏡匯聚的。
雙光子熒光顯微鏡是激光掃描共聚焦顯微鏡和雙光子激發技術相結合的新技術。雙光子激發的基本原理是:在光子密度較高的情況下,熒光分子可以同時吸收兩個波長較長的光子,經過短暫的所謂激發態壽命后,發射一個波長較短的光子;效果和用波長為長波長一半的光子激發熒光分子是一樣的。雙(多)光子成像的優點是具有更深的組織穿透深度,紅外光可以在平面上探測到極限為1mm的組織區域;因為信號背景比高,所以具有更高的對比度;由于激發體積小,具有定點激發、光毒性小的特點;激發波長由紫外、可見光調整為紅外激發,更加安全。
WinfriedDenk較初使用的光源是染料飛秒激光器(100fs脈寬、630nm可見光波長)。雖然染料激光器對于實驗室演示尚可,但是使用很不方便所以遠未實現商用。很快雙光子顯微鏡的標配光源就變成了飛秒鈦寶石激光器。除了固態光源優勢,鈦寶石激光器還具有較寬的近紅外波長調諧范圍,而近紅外相比可見光穿透更深,對生物樣品損傷更小。下圖是Thorlabs的雙光子和三光子顯微鏡配置,鈦寶石飛秒可調諧激光器位于平臺較左邊。科學家正在從雙光子轉向三光子顯微鏡。1996年,ChrisXu在康奈爾大學(Denk同導師實驗室)讀博期間發明了三光子顯微鏡,如果雙光子吸收可行,那么三光子看起來也是自然的發展方向。三光子成像使用更長的波長,大約在1.3和1.7微米,其成像深度也比雙光子更深,目前記錄約為2.2毫米,人類大腦皮層厚約4毫米。相比雙光子顯微鏡,三光子還要求以較低重頻使用更強和更短的激光脈沖,而傳統的鈦寶石激光器難以達到這些要求,但是對于摻鐿光纖飛秒光參量放大器則非常容易,比如我們的Y-Fi光參量放大器(OPA)。對于顯微成像技術包含:寬場熒光顯微鏡、激光共聚焦顯微鏡、轉盤共聚焦顯微鏡、雙光子顯微鏡。
從雙光子的原理和特點我們就可以明顯的得出雙光子的優點:☆穿透能力強:相對于紫外光,可見光和近紅外光都具有更強的穿透能力,因而受生物組織散射的影響更小,解決對生物組織中深層物質的層析成像研究問題;☆高分辨率:由于雙光子吸收截面很小,只有在焦平面很小的區域內可以激發出熒光,雙光子吸收局限于焦點處的體積約為波長3次方的范圍內;☆漂白區域小:由于激發只存在于交點處,所以焦點以外的區域都不會發生光漂白現象;☆熒光收集率高:與共聚焦成像相比,雙光子成像不需要光學濾波器(共焦),這樣就提高了對熒光的收集率,而收集率的提高直接導致圖像對比度的提高。雙光子顯微鏡的原理是什么?美國2PPLUS雙光子顯微鏡作用
雙光子顯微鏡還可以對一些具有雙光子特性的染料細胞進行特定實驗;美國2PPLUS雙光子顯微鏡作用
雙光子的來源:飛秒激光的雙光子吸收理論早在1931年就由諾貝爾獎獲得者MariaGoeppertMayer提出,并在30年后因為激光而得到實驗驗證,但WinfriedDenk用了近30年才發明了雙光子顯微鏡。要理解雙光子的技術挑戰和飛秒激光發揮的重要作用,首先要理解非線性過程。雙光子吸收相當于和頻產生的非線性過程,需要極高的電場強度,電場取決于聚焦光斑的大小和激光脈沖寬度。聚焦光斑越小,脈沖寬度越窄,雙光子吸收效率越高。對于衍射極限顯微鏡,聚焦在樣品上的光斑大小只與物鏡NA和激光波長有關,所以關鍵變量只有激光脈沖寬度。基于以上分析,能夠輸出高重復率(100MHz)的超短脈沖(100fs量級)的飛秒激光已經成為雙光子顯微鏡的標準激發光源。這再次顯示了雙光子顯微鏡的優勢:雙光子吸收只能在焦平面形成,而在焦平面之外,由于光強較低,無法激發,所以雙光子成像更清晰。美國2PPLUS雙光子顯微鏡作用