麻省理工學院和波士頓大學的研究人員近研究使用一種熒光探針,能夠在大腦細胞處于電活動狀態時點亮,可以立即對小鼠大腦中多個神經元的活動進行成像。麻省理工學院的腦科學和認知科學神經技術教授、兼生物工程學教授EdwardBoyden表示,只需要使用簡單的光學顯微鏡,即可實現這項技術。神經科學家可以將大腦內電路的活動進行可視化,并將其與特定行為聯系起來。“如果想研究一種行為或疾病,就需要對神經元群體的活動進行成像,讓這些神經元群網絡中協同工作。”Boyden說。鈣成像技術被廣泛應用于同時監測成百上千個神經元內鈣離子的變化。合肥鈣成像grain lens
使用MPM對神經元進行鈣成像時,通過隨機訪問掃描—即激光束在整個視場上的任意選定點上進行快速掃描—可以只掃描感興趣的神經元,這樣不僅避免掃描到任何未標記的神經纖維,還可以優化激光束的掃描時間。隨機訪問掃描可以通過聲光偏轉器(AOD)來實現,其原理是將具有一個射頻信號的壓電傳感器粘在合適的晶體上,所產生的聲波引起周期性的折射率光柵,激光束通過光柵時發生衍射。通過射頻電信號調控聲波的強度和頻率從而可以改變衍射光的強度和方向,這樣使用1個AOD就可以實現一維橫向的任意點掃描,利用1對AOD,結合其他軸向掃描技術可實現3D的隨機訪問掃描。但是該技術對樣本的運動很敏感,易出現運動偽影。目前,快速光柵掃描即在FOV中進行逐行掃描,由于利用算法可以輕松解決運動偽影而被guangfan的使用。北京熒光鈣成像售后保障現在鈣成像技術使用的鈣離子指示劑主要有化學性鈣離子指示劑和基因編碼鈣離子指示劑。
可見光激發Ca2+熒光探針與紫外光激發探針相比,可見光激發Ca2+探針具有更強的染料吸收性能,對Ca2+變化水平檢測敏感度也更高,能夠降低對活細胞的光毒性和樣品自發熒光以及光散射的干擾,且無光譜偏移。常使用的可見光激發Ca2+熒光探針有Fluo-3,Fluo-4,Rhod-2等,同時他們也都是非比率型指示劑。Fluo-3是常用的可見光激發Ca2+熒光指示劑之一,是典型的的單波長指示劑,比較大激發波長為506nm,比較大發射波長為526nm。它與Ca2+結合之前幾乎無熒光,結合后熒光會增加60至100倍,從而避免了細胞自身的熒光干擾。實際檢測時推薦使用的激發波長為488nm左右,發射波長為525~530nm。Fluo-3可以用在激光共聚焦顯微成像或流式細胞儀中。它還有一個升級版本Fluo-4,在相同Ca2+濃度下信號更強。
細胞內鈣離子作為重要的信號分子其作用具有時間性和空間性。當神經細胞興奮時,會產生一個電沖動,在此時,細胞外的鈣離子回流入該細胞內,促使這個細胞分泌神經遞質,神經遞質與相鄰的下一級神經細胞膜上的蛋白分子相結合,促使這個一級神經細胞產生新的電沖動。以此類推,神經信號便一級一級地傳遞下去,從而構成復雜的信號體系,形成了學習、記憶等大腦的高級功能。在哺乳動物神經系統中,鈣離子同樣扮演著重要的信號分子的角色。小鼠頭戴式微型顯微鏡為后續清醒動物腦功能鈣成像研究提供了一套可靠的顯微成像系統。
眾所周知,只有游離鈣才具有生物學活性,而細胞質內鈣離子濃度由鈣離子的內外流平衡所決定,同時也受鈣結合蛋白的影響。細胞外鈣離子內流的方式有很多種,其中包括電壓門控鈣離子通道、離子型谷氨酰胺受體、煙堿型膽堿能受體(nAChR)和瞬時受體電位C型通道(TRPC)等。神經元鈣成像的原理就是利用特殊的熒光染料或鈣離子指示劑將神經元中鈣離子濃度的變化通過熒光強度表現出來,以反映神經元活性。該方法可以同時觀察多個功能或位置相關的腦細胞。長時間追蹤相同細胞,進行可重復的科學研究對自由行為動物進行慢性鈣成像研究。北京熒光鈣成像售后保障
鈣成像技術一出現,就受到了全世界神經科學家們的追捧。合肥鈣成像grain lens
目前可用的指示劑較多,根據熒光光譜、與鈣離子親和力及其化學特性的不同大致分為化學性鈣離子指示劑和基因編碼鈣離子指示劑。前者指可特異性與鈣離子結合的小分子,常用的有fura-2、indo-1等;而后者主要指來源于綠色熒光蛋白GFP及其變異體的蛋白質,可與鈣調蛋白和肌球蛋白輕鏈激酶M13域結合,常用的有GCaMP、TN-XXL等,其中GCaMP5G和GCaMP6被廣泛應用于在體鈣成像研究中。生物熒光蛋白:Aequorin是水母熒光素(coelenterazine)通過硫酸酯鍵或過氧化鍵緊緊連到脫輔水母發光蛋白上形成的,遇到鈣離子就發出470nm藍光,可以作為鈣離子的檢測試劑;化學鈣離子指示劑:Fura-2可在紫外光下被jihuo且發射出505-520nm光;基于FRET的基因編碼的鈣指示劑;單個熒光基因編碼的鈣指示劑。合肥鈣成像grain lens