動態場景模擬機制:為了測試 GNSS 接收機在不同運動場景下的性能,信號模擬器具備動態場景模擬能力。對于移動的接收機,如汽車、飛機等,模擬器模擬其運動狀態對信號的影響。它根據設定的運動軌跡,如直線加速、圓周運動、復雜的飛行航線等,實時計算接收機與衛星之間的相對運動速度和距離變化。根據多普勒效應,相對運動速度會導致接收信號的頻率發生偏移,模擬器相應地調整衛星信號的頻率。同時,根據距離變化調整信號傳播延遲,使得模擬信號能夠真實反映接收機在動態場景中接收到的 GNSS 信號特征,滿足對接收機動態性能測試的需求。GPS 信號模擬器添加噪聲干擾,測試接收機抗噪性能。航海gnss導航模擬器錄制回放
按用途劃分,消費級 GNSS 接收器普遍應用于智能手機、車載導航儀等設備。這類接收器成本較低,定位精度一般在 5 - 10 米,能滿足日常出行導航需求。專業級接收器常用于測繪、地質勘探等領域,其定位精度可達厘米級甚至毫米級,配備高性能天線與信號處理芯片,可在復雜環境下穩定工作。從接收信號類型看,單頻接收器接收單一頻率信號,成本低但受電離層影響大;雙頻或多頻接收器能接收多個頻率信號,通過對比不同頻率信號的傳播延遲,有效校正電離層誤差,提高定位精度,常用于對精度要求嚴苛的應用場景。航海gnss導航模擬器錄制回放GNSS 衛星模擬器模擬衛星星座布局,研究星座協同工作機制。
GNSS 射頻模擬器的工作基于對衛星信號傳播過程的精確模擬。首先,它依據衛星軌道模型,精確計算不同時刻衛星的空間位置,這涉及復雜的天體力學算法,確保模擬衛星位置與真實情況高度契合。隨后,根據衛星位置確定信號傳播延遲,考慮到信號在電離層、對流層中的傳播影響,運用相應的物理模型進行修正。例如,通過 Klobuchar 模型處理電離層延遲,利用 Saastamoinen 模型計算對流層延遲。接著,生成衛星發射的偽隨機噪聲(PRN)碼序列,每個衛星對應獨特的碼序列。較后,將攜帶衛星位置、時間信息以及 PRN 碼的基帶信號,通過調制技術加載到射頻載波上,輸出模擬的 GNSS 射頻信號,完整模擬衛星信號從太空到地面的傳播路徑。
GPS 軌跡模擬器通過模擬衛星信號與接收機之間的交互來生成軌跡數據。它首先依據預設的地理位置信息和運動參數,如起點坐標、終點坐標、行進速度、加速度等,構建一個虛擬的運動模型。利用衛星定位原理,將運動過程離散化為一系列時間節點,在每個節點上根據模型計算出對應的模擬 GPS 坐標。例如,以勻加速直線運動為例,根據運動學公式計算不同時刻物體所在位置,轉化為經緯度坐標。這些坐標信息按照 GPS 數據格式進行編碼,生成模擬的 GPS 軌跡數據,如同真實的 GPS 接收機在該運動過程中接收到并記錄的數據一樣,為后續分析和應用提供基礎。GNSS 射頻模擬器輸出高精度射頻信號,用于接收機前端測試。
GNSS 模擬器的硬件架構是其功能實現的基礎。重心硬件包括信號生成板卡,它集成了高精度的數字信號處理器(DSP)和現場可編程門陣列(FPGA)。DSP 負責復雜的信號運算,依據衛星軌道參數、時間信息等生成精確的數字信號;FPGA 則用于靈活配置信號生成流程,實現快速的數據處理與信號調制。射頻模塊也是關鍵部分,它將數字信號轉換為射頻信號,并對其進行放大、濾波等處理,確保模擬信號能以合適的功率和質量輸出。此外,模擬器還配備了高精度的時鐘源,如原子鐘或銣鐘,為信號生成提供精細的時間基準,保證不同衛星信號間的時間同步精度,這對于模擬多衛星系統協同工作場景至關重要。存儲模塊用于存儲大量的衛星軌道數據、信號特征庫等信息,以便快速調用生成各類模擬信號。GNSS 模擬器模擬不同海拔信號,測試定位設備適用性。GPS信號模擬器錄制回放
GPS 衛星模擬器模擬衛星姿態變化,影響信號發射方向。航海gnss導航模擬器錄制回放
隨著科技發展,GNSS 模擬器涌現出許多新興應用場景。在智能農業領域,利用模擬器可模擬農田不同區域的衛星信號環境,幫助農民優化農機自動駕駛系統。例如,在山區農田,模擬因地形起伏導致的信號遮擋情況,測試農機能否準確按照預設路線進行播種、施肥等作業,提高農業生產效率和精細度。在虛擬現實(VR)/ 增強現實(AR)導航體驗中,GNSS 模擬器模擬用戶在虛擬環境中的位置變化所對應的衛星信號,讓用戶在沉浸式體驗中感受真實的導航定位效果,增強虛擬場景的真實感與互動性。在應急救援訓練方面,模擬器模擬災害現場復雜的信號環境,如地震后的城市廢墟中信號受阻情況,訓練救援人員使用定位設備進行精細救援,提升應急救援能力。航海gnss導航模擬器錄制回放