冰漿是由微小的冰晶和溶液組成,而溶液通常是由水和冰點調節劑(如乙二醇、乙醇或氯化鈉等)構成。由于冰晶的融解潛熱大,使得冰漿具有較高的蓄冷密度;同時由于冰晶具有較大的傳熱面積,使其具有較快的供冷速率和較好的溫度調解特性。它不象傳統的盤管式(內融冰、外融冰)和封裝式(冰球、冰板)蓄冷系統的冰凝結在換熱器的壁面上,增加了冰層的傳熱熱阻,使其傳熱效率較低。冰漿蓄冷系統現已被用于空調系統中,夜間低谷時蓄冷,白天高峰時供冷,冰漿蓄冷空調系統的容量一般只有高峰冷負荷的20%—50%,使其整個系統小巧、緊湊。由于冰漿蓄冷空調系統具有低溫送風特性,使得整個空調系統的風管、水管尺寸減小,冷量輸送的功耗也大為降低,運行成本減小。隨著能源危機的加劇,冰漿蓄冷技術的重要性日益凸顯。中山一體式冰漿蓄冷造價
冰漿的壓力降隨速度和冰晶濃度的變化。冰漿的壓力降與其摩擦系數、冰晶流動速度和冰晶濃度有關。在低速流動時,冰漿溶液出現了相分離,冰晶漂浮在通道的上部,這將增加不同濃度冰漿溶液間的壓力降變化。從圖8中可以看出,在低速流動時,不同濃度的冰漿溶液間的壓力降差別變化較大,這是由于低速流動時冰晶漂浮在通道上部,引起冰漿有效流通截面積減小,從而使其流速增加,阻力變化較大;同時通道上部聚集的冰晶也使其摩擦阻力增大。在高速流動時,不同冰漿濃度溶液與冷水之間壓力降差值變化較小,這是由于高速流動使得冰漿溶液成為均勻流動。中山一體式冰漿蓄冷造價冰漿蓄冷技術的展望:更高效、更經濟、更環保。
部分典型工程案例,從技術升級方向來看,下一代冰漿蓄冷技術升級將堅持能效提升和裝備提升兩個思路,一是簡化系統,減少載冷劑循環,可節省約20%泵功;減少換熱損失,可提高約6%的效率;二是提高制冰設備的集成度,減小占地面積;研發大容量制冰機組,實現電-冷轉換(制冰)裝備的集成化、模塊化、大型化,降低蓄冷系統成本,提高場景適應性。冰漿技術在供熱及其他領域的應用,宋文吉指出,冰漿技術也可在供熱領域實現應用。利用可控相變技術,可以進一步提取由水到冰的相變潛熱,這個熱可以作為熱泵供熱的熱源,冰源熱泵可為跨季節儲冷提供無償的冰。
冰漿溶液的傳熱系數隨其流量和濃度的變化。從圖中可知:傳熱系數是隨著流量的增加而增加、隨著冰漿濃度的增加而減小。這是由于冰漿濃度的增加減小了溶液的擾動,通過換熱器的流動是層流而不是紊流。盡管在較高冰漿濃度下,其傳熱系數下降,但由于微小的冰晶增加了其傳熱表面積,以及具有較大的傳熱溫差,仍然使其具有較高的傳熱量。動態冰漿由于具有蓄冷密度大、流動性和傳熱性能好等優點,現已被用于蓄冷空調系統中用于用電負荷的“移峰填谷”,還有用于工業處理過程和食品工程領域中。隨著對動態冰漿技術的深入研究,其設備成本將降低、運行效率將提高,潛在的應用領域將進一步擴大,動態冰漿是一種非常實用的新技術。冰漿蓄冷工藝的優化,有助于提高系統整體性能和制冷效率。
冰漿蓄冷與盤管蓄冰相比的優點:1)成本低:冰漿蓄冷的主要是以板式換熱器取代盤管蓄冰的盤管。就盤管材質而言,現在應用較多、更可靠的是美國進口的BAC鋼盤管、FAFCO和CALMAC塑料盤管,國內盤管的質量還不讓人放心,很多案例出現了泄漏問題。而冰漿蓄冷的板式換熱器是非常成熟的產品,成本上有一定優勢。2)調試量少:冰漿系統主要部件、控制系統,模塊化設計,安裝簡單,現場調試量少。而盤管為了保證制冰的順利,對融冰控制的要求高很多,融冰控制不只影響節錢量,還影響第二天的制冰。冰漿系統的融冰控制則要簡單的多。冰漿蓄冷流程的設計應考慮實際用冷需求,實現靈活調節。吉林淡水冰漿蓄冷散熱
冰漿蓄冷技術的主要優勢在于節能、環保、經濟。中山一體式冰漿蓄冷造價
冰漿的壓力降隨速度和冰晶濃度的變化。冰漿的壓力降與其擦系數冰晶流動速度和冰晶濃度有關。在低速流動時,冰漿溶液出現了相分離,冰晶漂浮在通道的上部,這將增加不同濃度冰漿溶液間的壓力降變化。從圖8中可以看出,在低速流動時不同濃度的冰漿溶液間的壓力降差別變化較大這是由于低速流動時冰晶漂浮在通道上部引起冰漿有效流通截面積減小,從而使其流速增加,阻力變化較大;同時通道上部聚集的冰晶也使其摩擦阻力增大。在高速流動時,不同冰漿濃度溶液與冷水之間壓力降差值變化較小,這是由于高速流動使得冰漿溶液成為均勻流動。中山一體式冰漿蓄冷造價