在低速流動時,不同濃度的冰漿溶液間的壓力降差別變化較大,這是由于低速流動時冰晶漂浮在通道上部,引起冰漿有效流通截面積減小,從而使其流速增加,阻力變化較大;同時通道上部聚集的冰晶也使其摩擦阻力增大。在高速流動時,不同冰漿濃度溶液與冷水之間壓力降差值變化較小,這是由于高速流動使得冰漿溶液成為均勻流動。為冰漿溶液的傳熱系數隨其流量和濃度的變化。從圖中可知:傳熱系數是隨著流量的增加而增加、隨著冰漿濃度的增加而減小。這是由于冰漿濃度的增加減小了溶液的擾動,通過換熱器的流動是層流而不是紊流。盡管在較高冰漿濃度下,其傳熱系數下降,但由于微小的冰晶增加了其傳熱表面積,以及具有較大的傳熱溫差,仍然使其具有較高的傳熱量。冰漿蓄冷技術具有明顯的經濟優勢,降低運營成本。福建動態冰漿蓄冷設備
(盤管和冰球放冷速率只有總蓄冷量的 12.5%,在一般空調的 10小時,只能平均融冰,運行收益大打折扣)冰漿融冰速率高,運行費用多 30%以上,冰漿的表面積是盤管和冰球結冰的上百倍,幾乎沒有融冰放冷速率的限制,在融冰供冷時,可以集中在電價高峰時段,較好地保證了用戶的運行效益。而盤管和冰球受限極為有限的表面積和靜止水的不良傳熱條件,融冰放冷速率只有總蓄冷量的12.5%,融冰放冷時,基本是平均在10小時以上的供冷時間,50%以上融冰冷量浪費在電價平段,沒有很好的運行效益。佛山新型冰漿蓄冷造價冰漿蓄冷系統在微電網中的應用,將提高能源利用率。
模塊化設計易于對系統能量進行調整--擴容或縮減。由冰漿發生器產生的冰漿儲存在蓄冷罐中,然后由泵輸送到供冷回路的冷凝器中,來自蒸發器的制冷劑蒸氣在該冷凝器中冷凝成液體,并利用重力流回到蒸發器中,蒸發冷卻通過空氣處理箱的空氣。在供熱回路中,由冰漿發生器產生的熱量供給制熱回路中的蒸發器,來自空氣處理箱中冷凝器的制冷劑液體在重力作用下而流入蒸發器,在蒸發器中以較高的蒸發溫度氣化吸收來自冰漿發生器產生的熱量,氣化后的制冷劑蒸氣然后進入空氣處理箱中的冷凝器放熱加熱流入的空氣。
冰漿蓄冷與盤管蓄冰相比的優缺點,答:主要優點:效率高:a、換熱條件好。冰漿是液液(水和乙二醇)交換,換熱的兩側都是傳熱較佳的紊流狀態。而盤管是液固液(乙二醇、冰和水)交換,有冰的熱阻,而且水側是靜止的,所以盤管蓄冰沒有很好的換熱條件。b、蒸發溫度高。制取冰漿時,主機乙二醇的溫度只需-3.5℃,而盤管需要-5℃~-7℃,效率高10%以上。綜合比較,冰漿系統效率至少高20%以上。例如,冰漿系統可以選用432RT的主機,而蓄冰量卻比盤管蓄冰所選500RT的主機更多。冰漿蓄冷可與常規冷水機組并聯運行,靈活應對不同負荷需求。
冰漿蓄冷于20世紀90年代開始發展起來,在節能意識極強的日本首先實現產業化應用。目前,純水冰漿蓄冷已成為日本市場的技術主流,動態冰蓄冷技術又分為兩個分支:一是純水冰漿技術;一是鹽水冰漿技術。純水冰漿技術采用普通水(無任何添加成分)作為蓄冷介質,通過過冷卻換熱原理動態制取純水冰漿。鹽水冰漿的制取技術與其相同,但采用的是10%以下的稀鹽水溶液(乙二醇、乙醇等)作為蓄冷介質,相應地生成的冰漿的溫度低于純水冰漿。從日本的使用情況來看,純水式動態冰蓄冷技術是目前動態冰蓄冷技術的主流表示,鹽水式動態冰蓄冷的實用案例相對較少。冰漿蓄冷技術的研發,將朝著更高效、更環保、更經濟的方向發展。福建動態冰漿蓄冷設備
冰漿儲存環節需選用合適的蓄冷容器,確保冷量穩定儲存。福建動態冰漿蓄冷設備
動態冰漿蓄冷系統的設計要點,動態冰漿蓄冷系統由雙工況空調主機、制冰機、蓄冰槽、水泵,板式換熱器,微冰晶處理器、管道及控制系統等組成,如圖1所示:雙工說空調主機,靜態冰蓄冷隨著管外冰層厚度增加,傳導熱阻也同時增加,導致主機輸出溫度不斷降低,溫度是變動的。動態冰漿蓄冷采用乙一醇載冷劑與水在板式換熱器內強制對流換熱,在運行中板式換熱器的換熱熱阻不會發生變化,所以要求主機輸出溫度恒定,確保系統運行穩定。制冰機,制冰機是動態冰漿蓄冷系統的主要部件,制冰機的作用是制取過冷水并促使過冷水解除過冷度變成冰漿,然后通過水泵輸送到蓄冰槽進行儲存。福建動態冰漿蓄冷設備