針對液環真空泵的機械密封泄漏嚴重、檢修頻繁等現象,通過分析其機械密封存在的問題,提出了將密封形式改造為雙端面干氣密封的方案。文章介紹了干氣密封的基本結構和工作原理,指出了使用注意事項,將改造后的干氣密封和輔助控制系統成功應用到液環真空泵中。通過長時間運行驗證,解決了原密封存在的問題。干氣密封無介質泄漏,維護簡單,使檢修次數得到大幅減少,延長了使用壽命,并極大地提高了設備運行的安全性和穩定性。氣源氮氣在動靜環側密封之間通入,一旦密封發生泄漏,泄漏介質會被氮氣趕至液環真空泵中,這樣可保證輸送介質和工作液環的零泄漏和零逸出。干氣密封系統的設計需要綜合考慮流體動力學、熱力學等多種因素,以實現較佳效果。山東進口干氣密封定制
一般情況下,對干氣密封的性能產生影響的主要參數為密封操作參數與密封結構參數兩種形式。具體分析如下。密封操作參數:1)密封直徑、轉速的影響作用。經大量實踐表明,密封的直徑作用越大,則轉速越高;密封的環線速度越快,則干氣密封形式產生的泄漏量就越多。2)密封氣壓的影響作用。一般情況下,如果存在干氣密封的工作間隙,則其中壓力越大,發生氣體泄漏的可能性就越大。3)工作介質溫度、粘度的影響作用。有關工作介質溫度產生的影響作用,主要原因是考慮到溫度的影響,直接作用到介質粘度中。隨著介質粘度的增加,動壓效應有所增強,且氣膜的厚度加重,同時加大了密封間隙中阻力。這種情況下,不會對密封泄漏量產生過大影響。山東進口干氣密封定制對于大規模生產設施而言,干氣密封能夠明顯減少停機時間,從而提升整體產值。
干氣密封的特性及主要工作原理。干氣密封概述:早在20世紀60年代末期,定在氣體動壓軸承應用的基礎上,干氣密封發展起來,并成為一種全新的非接觸式密封。該密封利用流體動力學原理,通過在密封端面上開設動壓槽而實現密封端面的非接觸性運行。較初,采用于氣密封形式,主要為了改善高速離心壓縮機的軸封問題。由于密封采取非接觸性的運行方式,因此其密封的摩擦副材料基本不會受到PV值的任何影響,尤其在高壓設備高速設備中應用,具有良好前景。
在動力平衡狀態下,作用在密封上的力分布情況。其中,閉合力Fc是由氣體壓力和彈簧力共同構成的,而開啟力Fo則是通過端面間的壓力分布對端面面積進行積分來得到的。在平衡狀態下,Fc與Fo相等,從而維持著大約3微米的運行間隙。然而,如果由于某種外部干擾導致密封間隙縮小,那么端面間的壓力將會相應升高。此時,開啟力Fo將超過閉合力Fc,進而促使端面間隙自動增大,直至重新達到平衡狀態。類似地,當外部擾動導致密封間隙擴大時,端面間的壓力會隨之降低。這種情況下,閉合力Fc將超過開啟力Fo,促使端面間隙自動縮小,直至重新恢復平衡狀態。這種機制在靜環和動環組件間形成了一層穩定性較佳的氣體薄膜,確保在常規動力運行中,端面能夠維持分離狀態,避免接觸磨損,從而明顯延長使用壽命。基于上述結構的不同組合,并結合輔助密封措施,可以演變出多種適用于實際工作環境的結構類型,其中之一便是干氣密封。例如,單端面干氣密封特別適用于工藝氣體少量泄漏至大氣且無害的場合。干氣密封在高速旋轉設備中表現尤為出色,有效減少了磨損和故障率。
串聯式干氣密封:此類密封適用于允許微量工藝氣體泄漏至大氣的工況,其結構如圖7所示。一套串聯式干氣密封,可以理解為由兩套或更多套干氣密封按照同一方向首尾相接而組成。與單端面結構相似,其密封介質同樣采用工藝氣本身。在實際應用中,通常采用兩級結構:頭一級(即主密封)承擔大部分或全部負荷,而另一級則作為備用密封,不承受或只承受小部分壓力降。當工藝氣體通過主密封泄漏時,會被引入火炬進行燃燒處理。只有極少量的未燃燒工藝氣通過二級密封漏出,并被引入安全區域排放。這種設計確保了當主密封失效時,二級密封能發揮輔助安全作用,有效防止工藝介質大量泄漏至大氣中。此外,還有另一種特殊的串聯式干氣密封——帶中間進氣的版本,它適用于那些既不允許工藝氣泄漏到大氣中,又不允許阻封氣進入機內的特殊工況。由于無液體滲透問題,這種技術尤其適合處理易揮發或危險化學品。江西雙端面干氣密封廠商
不同類型的干氣密閉設計應根據具體需求進行定制,以實現較佳效果與效率平衡。山東進口干氣密封定制
干氣密封技術歷經四代革新,憑借非接觸式氣體潤滑成為離心壓縮機主流選擇。其主要在于動壓螺旋槽設計,通過泵送效應形成穩定氣膜,但需警惕污染、操作不當及設計缺陷導致的失效風險。干氣密封的發展與原理:離心式壓縮機,這一在氣體輸送和加壓方面發揮著關鍵作用的高速旋轉透平設備,其軸端密封技術已經歷了數代的革新。從早期的迷宮密封、浮環密封,再到后來的油膜機械密封,如今已邁入了全新的第四代——氣體潤滑端面密封,也就是我們常說的 干氣密封。這一技術以其非接觸式的氣體潤滑特點,成為了當前的主流選擇。山東進口干氣密封定制