冷噴涂技術以超音速(Mach 3)噴射金屬顆粒,通過塑性變形固態沉積成型,適用于熱敏感材料。美國VRC Metal Systems采用冷噴涂修復直升機變速箱齒輪,結合強度300MPa,成本較激光熔覆降低60%。NASA將冷噴涂鋁用于國際空間站外殼修補,抗微隕石撞擊性能提升3倍。挑戰包括:① 粉末需高塑性(如純銅、鋁);② 基體表面需噴砂處理(粗糙度Ra 5μm);③ 沉積效率50-70%。較新進展中,澳大利亞Titomic公司開發動力學冷噴涂(Kinetic Spray),沉積速率達45kg/h,可制造9米長船用螺旋槳。粉末冶金燒結過程中的液相形成機制對硬質合金的晶粒長大有決定性影響。安徽金屬粉末品牌
目前金屬3D打印粉末缺乏全球統一標準,ASTM和ISO發布部分指南(如ASTM F3049-14針對鈦粉)。不同廠商的粉末氧含量(鈦粉要求<0.15%)、霍爾流速(不銹鋼粉<25s/50g)等指標差異明顯,導致跨平臺兼容性問題。歐洲“AM Power”組織正推動粉末批次認證體系,要求供應商提供完整的生命周期數據(包括回收次數和熱處理歷史)。波音與GKN Aerospace聯合制定的“BPS 7018”標準,規范了鎳基合金粉的衛星粉含量(<0.3%),成為航空供應鏈的參考基準。
液態金屬(鎵銦錫合金)3D打印技術通過微注射成型制造可拉伸電路,導電率3×10? S/m,拉伸率超200%。美國卡內基梅隆大學開發的直寫式打印系統,可在彈性體基底上直接沉積液態金屬導線(線寬50μm),用于柔性傳感器陣列。另一突破是納米銀漿打印:燒結溫度從300℃降至150℃,兼容PET基板,電阻率2.5μΩ·cm。挑戰包括:① 液態金屬的高表面張力需低粘度改性劑(如鹽酸處理);② 納米銀的氧化問題需惰性氣體封裝。韓國三星已實現5G天線金屬網格的3D打印量產,成本降低40%。
3D打印金屬粉末的制備是技術鏈的關鍵環節,主要依賴霧化法。氣霧化(GA)和水霧化(WA)是主流技術:氣霧化通過高壓惰性氣體(如氬氣)將熔融金屬液流破碎成微小液滴,快速冷卻后形成高球形度粉末,氧含量低,適用于鈦合金、鎳基高溫合金等高活性材料;水霧化則成本更低,但粉末形狀不規則,需后續處理。近年等離子旋轉電極霧化(PREP)技術興起,通過離心力甩出液滴,粉末純凈度更高,但產能受限。粉末粒徑通常控制在15-53μm,需通過篩分和氣流分級確保均勻性,以滿足不同打印設備(如SLM、EBM)的鋪粉要求。粉末床熔融(PBF)技術通過精確控制激光參數,可實現99.5%以上的材料致密度。
AI算法通過生成對抗網絡(GAN)優化支撐結構設計,使支撐體積減少70%。德國通快(TRUMPF)的AI工藝鏈系統,輸入材料屬性和零件用途后,自動生成激光功率(誤差±2%)、掃描策略和后處理方案。案例:某航空鈦合金支架的AI優化參數使抗拉強度從1100MPa提升至1250MPa。此外,數字孿生技術可預測打印變形,提前補償模型:長1米的鋁合金框架經仿真預變形修正后,尺寸偏差從2mm降至0.1mm。但AI模型依賴海量數據,中小企業數據壁壘仍是主要障礙。水霧化法生產的316L不銹鋼粉末成本較低,但流動性略遜于氣霧化制備的粉末。溫州不銹鋼粉末價格
粉末冶金多孔材料憑借可控孔隙結構在過濾器和催化劑載體領域應用廣闊。安徽金屬粉末品牌
金屬3D打印的粉末循環利用率超95%,但需解決性能退化問題。例如,316L不銹鋼粉經10次回收后,碳含量從0.02%升至0.08%,需通過氫還原爐(1200℃/H?)恢復成分。歐盟“AMEA”項目開發了粉末壽命預測模型:根據霍爾流速、氧含量和衛星粉比例計算剩余壽命,動態調整新舊粉混合比例(通常3:7)。瑞典H?gan?s公司建成全球較早零廢棄粉末工廠:廢水中的金屬微粒通過電滲析回收,廢氣中的納米粉塵被陶瓷過濾器捕獲(效率99.99%),每年減排CO? 5000噸。