可以使用三個間隔開的支撐絕緣體53、55和57來支撐水平走向的裸電阻線材51,其中支撐絕緣體還同時支撐線圈部分(未示出)。圖7b示出了用于保持電阻線材的支撐絕緣體的不同構造,并由附圖標記58表示。圖8a和8b示出了支撐絕緣體的另一實施例,其中圖8a示出了由附圖標記59a,59b和59c表示的三個支撐絕緣體。這些支撐絕緣體分別具有延伸臂61a,61b,61c,并且每個延伸臂具有第三線圈支撐部分63a,63b,63c。圖8b示出了示例性使用中的支撐絕緣體59a,其中,第三線圈支撐部分63a除了由線圈支撐部分67提供的支撐之外,還為線圈部分65提供附加支撐。在一對線圈部分被安裝在金屬板的一側上并且電阻線材69在相鄰的線圈部分之間延伸的情況下,一對支撐絕緣體59a可以用于每個線圈部分。如圖9a-c的實施例中所示,支撐絕緣體的延伸臂可以具有一個以上的狹槽,其示出了支撐絕緣體的兩種不同構造(設計為71a和71b)。對于圖9a中的支撐絕緣體71a,延伸臂73具有一對狹槽75,每個狹槽支撐線圈部分77和79中的每一個的一部分(未示出將線圈部分分開并附接到支撐絕緣體71a上的金屬板)。在此,線圈翻轉彎曲部是自由的,但是線圈本身被額外地支撐并固定在適當的位置。勵磁線圈的線圈在安裝時需要確保正確的極性。吉林勵磁線圈制造
支撐絕緣體,該支撐絕緣體設計為在開路線圈電加熱器中(尤其是在線圈斷匝(break-turn)中)支撐線材等。背景技術:在現有技術中,眾所周知的是使用支撐絕緣體來保持在開路線圈電加熱器中使用的電阻線材的一部分。美國專利號5,925,273和7,075,043是這種支撐絕緣體的示例。一個常見的開路元件或(開路線圈)電加熱器行業問題涉及所謂的跨越(cross-over)問題,即跨越金屬板。當需要將線圈從金屬板的一側布線到另一側時,通常以所謂的“斷匝”形式形成線圈。然后將其重新布線到金屬板的另一側。這里的問題是,在極端條件下或不可預見的損壞下,開路線圈元件可能會接觸金屬板。元件可能會與金屬板短路,從而導致故障或可能的安全。圖1示出了由附圖標記200表示的現有技術的油線圈電加熱器組件的示意圖,并且示出了傳統的陶瓷線圈支撐絕緣體201,其一端安裝在金屬板203上并且在另一端支撐相應的一對線圈205。還示出了線圈斷匝207、跨越點209和板附接狹槽211。這些類型的加熱器是眾所周知的,并且errill的美國專利號5,925,273中公開了這種類型的示例,該**通過引用結合在本公開中。由于這些加熱器是眾所周知的,因此對于理解本發明而言,不需要對其所有組成部分進行詳細描述。溫州勵磁線圈廠商勵磁線圈的線圈在設計時需要考慮其對電機控制的影響。
線圈中通過變化的電2113流,沿線圈中心就有磁力線通5261過,電流變化率越4102大,磁力線也越多,直到飽和,斷開1653電流,磁力線消失,這就叫勵磁線圈。工業應用中,為了提高測量的準確度就要盡量增強勵磁磁場的強度以及磁場的均勻性,使得電極兩端的感應電動勢增強。在同樣的勵磁條件以及線圈用料相同的情況下,可以繞制成多種形狀的勵磁線圈,通過比較產生的磁場均勻性以及磁場強度,可以選出適合的勵磁線圈形狀。勵磁線圈的形狀常見的有圓形、菱形和馬鞍形3種。對相同用料下不同形狀勵磁線圈產生的磁場的強度以及均勻度進行仿真比較。擴展資料為保證用料相同,以圓形的周長為1m,按比例繞制馬鞍形和菱形的線圈。將馬鞍形、圓形和菱形線圈分別貼到管壁上,令線圈軸向長度與用料相同,且被測液體流速均為1m/s。其中,具體仿真參數設置如下:1)管道參數。管道直徑為100mm,管壁厚度為10mm,管道長度為220mm。2)線圈參數。線圈寬度厚度為10mm,線圈軸長為150mm。3)勵磁參數。圓形線圈為200匝,菱形為273匝,馬鞍形為185匝,勵磁電流為1A。
折疊電感量電感量L表示線圈本身固有特性,與電流大小無關。除專門的電感線圈(色碼電感)外,電感量一般不專門標注在線圈上,而以特定的名稱標注。折疊感抗電感線圈對交流電流阻礙作用的大小稱感抗XL,單位是歐姆。它與電感量L和交流電頻率f的關系為XL=2πfL折疊品質因素品質因素Q是表示線圈質量的一個物理量,Q為感抗XL與其等效的電阻的比值,即:Q=XL/R。線圈的Q值愈高,回路的損耗愈小。線圈的Q值與導線的直流電阻,骨架的介質損耗,屏蔽罩或鐵芯引起的損耗,高頻趨膚效應的影響等因素有關。線圈的Q值通常為幾十到幾百。折疊分布電容線圈的匝與匝間、線圈與屏蔽罩間、線圈與底版間存在的電容被稱為分布電容。分布電容的存在使線圈的Q值減小,穩定性變差,因而線圈的分布電容越小越好。勵磁線圈負責提供磁場,以驅動電機的旋轉。
國內外勵磁調節器也經歷了這一發展過程。如國外ABB勵磁調節器經歷了從Unitrol1000到Unitrol5000再到Unitrol6000的發展。調節器的發展是勵磁系統主要發展標志。現行的勵磁調節器大都采用多CPU架構,充分發揮各CPU的優勢完成各自的功能。根據任務的實時性要求劃分為不同的等級,采用不同的CPU完成不同的任務。各CPU間通過總線技術或通訊技術完成數據交換,使各CPU協同工作成為一體。調節器內部采用CAN、ARCNET、以太網等通訊技術實現勵磁調節器及勵磁系統的數字化。采用多通道熱備用冗余技術,一般采用兩通道或三通道調節器或根據需要靈活配置通道,增加可靠性等勵磁線圈的絕緣處理可以防止電流泄漏。溫州勵磁線圈廠商
勵磁線圈的繞制密度影響其磁場強度。吉林勵磁線圈制造
計算得到線圈相對于空間xyz三個軸的相對角度。所述輸出模塊包括顯示單元,在本實施例中為顯示屏1,用于接收處理模塊發送的線圈姿態信息,并顯示所述姿態信息。具體地,所述顯示屏1可顯示線圈的三個轉動變量,分別對應于線圈相對于空間xyz三個軸的相對角度值。在使用過程中,操作者可通過經顱磁刺激儀上的單次刺激按鈕2,啟動單次刺激模塊,向磁刺激線圈施加高壓脈沖,使線圈發出磁刺激脈沖,同時指示燈3亮起,操作者在受試者頭部附近調整刺激線圈的擺放位置,觀察受試者基于接收到的刺激的反應,如果引起了受試者的生理反應,由操作者記錄下顯示屏1上顯示的此時線圈的姿態參數,該姿態參數就是該患者進行磁刺激***時,線圈放置的比較好參數。在進一步的實施例中,所述處理模塊中還包括存儲單元,用于存儲磁刺激線圈的姿態參數。所述存儲單元可接受操作者的指令,存儲若干組線圈姿態參數。具體地,操作者可通過外接輸入設備手動輸入線圈姿態參數;或者,在所述磁刺激線圈受單次刺激模塊控制發出磁刺激脈沖的過程中,當操作者將經顱磁刺激儀保持同一擺放位置超過一段時間,即自動存儲當時的線圈姿態參數。實施例2在實施例1的基礎上,本實施例中。吉林勵磁線圈制造