熱紅外顯微鏡能高效檢測微尺度半導體電路及MEMS器件的熱問題。在電路檢測方面,這套熱成像顯微鏡可用于電路板失效分析,且配備了電路板檢測用軟件包“模型比較”,能識別缺陷元件;同時還可搭載“缺陷尋找”軟件模塊,專門探測不易發現的短路問題并定位短路點。在MEMS研發領域,空間溫度分布與熱響應時間是微反應器、微型熱交換器、微驅動器、微傳感器等MEMS器件的關鍵參數。目前,非接觸式測量MEMS器件溫度的方法仍存在局限,而紅外成像顯微鏡可提供20微米空間分辨率的熱分布圖像,是迄今為止測量MEMS器件熱分布的高效工具。
半導體芯片內部缺陷定位是工藝優化與失效分析的關鍵技術基礎。檢測用熱紅外顯微鏡分析
當電子設備中的某個元件發生故障或異常時,常常伴隨局部溫度升高。熱紅外顯微鏡通過高靈敏度的紅外探測器,能夠捕捉到極其微弱的熱輻射信號。這些探測器通常采用量子級聯激光器等先進技術,或其他高性能紅外傳感方案,具備寬溫區、高分辨率的成像能力。通過對熱輻射信號的精細探測與分析,熱紅外顯微鏡能夠將電子設備表面的溫度分布以高對比度的熱圖像形式呈現,直觀展現熱點區域的位置、尺寸及溫度變化趨勢,從而幫助工程師快速鎖定潛在的故障點,實現高效可靠的故障排查。什么是熱紅外顯微鏡圖像分析熱紅外顯微鏡可實時監測電子設備運行中的熱變化,預防過熱故障 。
熱紅外顯微鏡是半導體失效分析與缺陷定位的三大主流手段之一(EMMI、THERMAL、OBIRCH),通過捕捉故障點產生的異常熱輻射,實現精細定位。存在缺陷或性能退化的器件通常表現為局部功耗異常,導致微區溫度升高。顯微熱分布測試系統結合熱點鎖定技術,能夠高效識別這些區域。熱點鎖定是一種動態紅外熱成像方法,通過調節電壓提升分辨率與靈敏度,并借助算法優化信噪比。在集成電路(IC)分析中,該技術廣泛應用于定位短路、ESD損傷、缺陷晶體管、二極管失效及閂鎖問題等關鍵故障。
在失效分析的有損分析中,打開封裝是常見操作,通常有三種方法。全剝離法會將集成電路完全損壞,留下完整的芯片內部電路。但這種方法會破壞內部電路和引線,導致無法進行電動態分析,適用于需觀察內部電路靜態結構的場景。局部去除法通過特定手段去除部分封裝,優點是開封過程不會損壞內部電路和引線,開封后仍可進行電動態分析,能為失效分析提供更豐富的動態數據。自動法則是利用硫酸噴射實現局部去除,自動化操作可提高效率和精度,不過同樣屬于破壞性處理,會對樣品造成一定程度的損傷。
熱紅外顯微鏡通過熱輻射相位差算法,三維定位 3D 封裝中 Z 軸方向的失效層。
從傳統熱發射顯微鏡到致晟光電熱紅外顯微鏡的技術進化,不只是觀測精度與靈敏度的提升,更實現了對先進制程研發需求的深度適配。它以微觀熱信號為紐帶,串聯起芯片設計、制造與可靠性評估全流程。在設計環節助力優化熱布局,制造階段輔助排查熱相關缺陷,可靠性評估時提供精細熱數據。這種全鏈條支撐,為半導體產業突破先進制程的熱壁壘提供了扎實技術保障,助力研發更小巧、運算更快、性能更可靠的芯片,推動其從實驗室研發穩步邁向量產應用。
在高低溫循環(-40℃~125℃)中監測車載功率模塊、傳感器的熱疲勞退化。無損熱紅外顯微鏡圖像分析
熱紅外顯微鏡助力科研人員研究新型材料的熱穩定性與熱性能 。檢測用熱紅外顯微鏡分析
紅外顯微鏡(非熱紅外)與熱紅外顯微鏡應用領域各有側重。前者側重成分分析,在材料科學中用于檢測復合材料界面成分、涂層均勻性及表面污染物;生物醫藥領域可識別生物組織中蛋白質等分子分布,輔助診斷;地質學和考古學中能鑒定礦物組成與文物顏料成分;食品農業領域則用于檢測添加劑、農藥殘留及農作物成分。熱紅外顯微鏡聚焦溫度與熱特性研究,電子半導體領域可定位芯片熱點、評估散熱性能;材料研究中測試熱分布均勻性與熱擴散系數;生物醫藥領域監測細胞代謝熱分布及組織熱傳導;工業質檢能檢測機械零件隱形缺陷,評估電池充放電溫度變化。二者應用有交叉,但分別為成分分析與熱特性研究。檢測用熱紅外顯微鏡分析