GNSS 接收器工作時,首要步驟是捕獲衛星信號。它通過搜索特定頻段,如 GPS 的 L1、L2 頻段,北斗的 B1、B2 頻段等,識別出衛星發射的偽隨機噪聲(PRN)碼。一旦捕獲到信號,便進入跟蹤階段,持續鎖定衛星信號,確保穩定接收。在解算環節,接收器利用接收到的多個衛星信號的時間延遲,結合衛星軌道信息,運用三角測量原理計算自身位置。例如,通過測量信號從三顆衛星傳播到接收器的時間差,確定以衛星為球心、傳播距離為半徑的三個球面,其交點即為接收器位置。同時,接收器還能根據信號頻率的多普勒頻移計算速度,依據時間信息實現時鐘同步。GNSS 模擬器支持多系統信號模擬,滿足全球定位應用需求。北斗GNSS模擬器供應商
在多系統協同工作的趨勢下,GNSS 模擬器具備良好的系統兼容性。它能同時模擬多個衛星系統的信號,如 GPS、北斗、GLONASS 和 Galileo 等,并且可根據用戶需求,靈活設置各衛星系統信號的比例與組合方式。在模擬過程中,能有效處理不同衛星系統間的時間同步問題,通過內部的時間轉換機制,確保不同系統信號在時間上精細匹配,真實模擬多衛星系統聯合定位的場景,為支持多系統融合的 GNSS 接收機研發與測試提供了有力工具,適應全球衛星導航系統多元化發展的需求。GPS發生器錄制回放GNSS 信號模擬器模擬多徑效應,優化信號處理算法。
軟件定義 GNSS 模擬器主要依靠計算機軟件來生成 GNSS 信號。通過編寫復雜的算法,在計算機上模擬衛星軌道、信號調制、傳播延遲等過程,然后利用數模轉換設備將數字信號轉換為模擬信號輸出。這種模擬器靈活性高,易于升級和修改模擬算法,適合科研機構進行新型信號體制研究或算法開發。硬件加速 GNSS 模擬器則采用特用的硬件芯片或電路來生成信號。這些硬件經過優化設計,能快速處理大量信號計算任務,提高信號生成的速度與精度,適用于對信號實時性要求高的應用場景,如工業自動化中的實時定位系統測試。
在科研領域,GNSS 射頻模擬器為研究人員提供了可控的實驗環境。例如,在研究新型導航算法時,科研人員可利用模擬器模擬各種復雜信號場景,測試算法在不同條件下的性能,加速算法優化進程。在導航設備制造行業,它是產品研發與質量檢測的關鍵工具。制造商通過模擬不同地理環境、信號干擾等情況,對 GNSS 接收機、天線等設備進行多方面測試,確保產品在實際使用中具備穩定可靠的性能。在航空航天領域,模擬器模擬飛機、衛星等飛行器在飛行過程中接收到的 GNSS 信號,助力飛行器導航系統的研發與驗證,保障飛行安全。GNSS 導航模擬器創建多種導航場景,提升導航系統可靠性。
GPS 軌跡模擬器常與地理信息系統(GIS)集成,將模擬軌跡直觀地展示在詳細的地圖背景上,借助 GIS 強大的空間分析功能,對軌跡進行空間查詢、分析軌跡與地理要素的關系等。它還可與車輛自動駕駛系統集成,模擬各種路況下的車輛行駛軌跡,為自動駕駛算法的訓練和測試提供大量數據,幫助優化自動駕駛決策模型。在智能安防領域,與監控系統集成,通過模擬人員或物體的移動軌跡,測試安防系統對異常軌跡的監測和預警能力,提升安防系統的智能化水平。GNSS 衛星模擬器模擬衛星組網,研究衛星間通信機制。室內GPS軌跡模擬器
GNSS 導航模擬器模擬山區導航場景,改善山區定位精度。北斗GNSS模擬器供應商
信號生成基礎:GNSS 信號模擬器首要任務是生成基礎信號。它基于精確的數學算法,模擬衛星在太空中的運動軌跡。以 GPS 系統為例,依據開普勒定律等軌道力學知識,計算出衛星在不同時刻的精確位置。同時,內置高精度時鐘模型,模擬衛星攜帶的原子鐘信號。通過這些復雜的運算,得到每個衛星對應的偽隨機噪聲(PRN)碼序列起始點。這些 PRN 碼如同衛星的獨特 “指紋”,每個衛星都有專屬序列。將衛星位置信息、時鐘信息與 PRN 碼信息相結合,利用數字信號處理器(DSP)生成較初的數字基帶信號,為后續模擬真實衛星信號奠定基礎。北斗GNSS模擬器供應商